NH
& JOURNAL OF

\$ e T VAR
;@ GEOMETRY Ako

PHYSICS
ELSEVIER Journal of Geometry and Physics 46 (2003) 355-393

www elsevier.com/locate/jgp

Relative topological integrals and relative
Cheeger—-Simons differential characters

Roberto ZucchirfiP*

@ Dipartimento di Fisica, Universita degli Studi di Bologna, V. Irnerio 46, 1-40126 Bologna, Italy
b INFN, Sezione di Bologna, Bologna, Italy

Received 24 October 2000; received in revised form 5 May 2002

Abstract

Topological integrals appear frequently in Lagrangian field theories. On manifolds without
boundary, they can be treated in the framework of (absolute) (co)homology using the formalism of
Cheeger—Simons differential characters. String BAdgrane theory involve field theoretic models
on worldvolumes with boundary. On manifolds with boundary, the proper treatment of topological
integrals requires a generalization of the usual differential topological set up and leads naturally
to relative (co)homology and relative Cheeger—Simons differential characters. In this paper, we
present a construction of relative Cheeger—Simons differential characters which is computable in
principle and which contains the ordinary Cheeger—Simons differential characters as a particular
case.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Topological integrals appear frequently in Lagrangian field theories such as Chern—Simons
model, Wess—Zumino—Witten model, gauge theory #nddrane theory, to mention only
the most popular and best known. They are formal integrals on topologically non-trivial
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manifolds of differential forms which are only locally defined. The integrand thus suffers
ambiguities on overlapping coordinate patches, making the definition of integration prob-
lematic. In physics, the problem of the proper definition of topological integrals has been
studied by several authors since the mid eighfies3] and also recently it has been the
object of a number of studigd—8]. In mathematics, the interest in this topic dates back

at least to the early seventies when it was attempted to frame the Chern-Simons forms
associated to connections on a principal bundle in appropriate global differential topolog-
ical structures on its base space. It resulted in the theory of Cheeger—Simons differential
character§9—11]whose apparent relation with the smooth versions of Deligne cohomology
[12] and Deligne—Beilinson cohomolog¥3,14] developed a decade later was noticed in
the early ninenties and has been reconsidered reddsily

Virtually all the above studies deal with absolute cohomology and differential characters.
A generalization of the formalism appropriate for relative cohomology and differential
characters has not been fully worked out to the best of our knowledge. This is attempted in
the present paper.

The reason why this is an interesting problem and not a mere academic exercise is shown
by the physical examples illustrated below in which the relevance of relative cohomology
and differential characters should be apparent. Since we have physical applications in mind,
we want to provide a constructive treatment, i.e. one computable at least in principle. For
this reason, we opt for a formulation closer in spirit to Cheeger’s and Simons’, which is
somewhat more concrete and thus more suitable for the physicists’ computational needs.
We shall do this using the machinery ©&ch (co)homology as ifi—3]. We shall not use
partitions of unity as i8], since these are required by distribution valued quantized fields,
while the fields relevant in our examples are background semiclassical fields. Though we
work mostly in the framework of relative integer conomology, our formulation presumably
might be extended to more general relative cohomology theories, in partictitzory.

Consider a space—timg and aD-brane occupying a submanifold C X in type Il
string theory. The background is characterized by the NS NS Bigl&urther, theD-brane
carries alJ(1) gauge fieldAs. For a string with world shee¥; € X such thabh>, C Y,
the path integral measure contains a factor

pfaﬁ(D;)exp(i/ Bz—i/ A1>, (1.2)
o 3%

whereD3 is the Dirac operator o> and pfaff( D x) its pfaffian[16]. If 0X» = ¢, the sign

of pfaff (Dy) is uniquely defined. In order for the path integral measure to be well defined
H3 = dB3 is required to be a globally defined closed 3-form with quantized fluxes through
any closed 3-fold#; C X:

H3 € 2nZ. (1.2)
P3

If 90X # ¢, the sign of pfaff(Dyx) is not uniquely defined in general, signaling a global
world-sheet anomaly. Consistency requires that this anomaly be canceled by an equal and
opposite anomaly of the exponential factor(@fl). In order for this to be possible, the
2-form B2 = B2 — dA; must be globally defined oh so that the restriction aff3 on Y
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is exact. The quantization conditi¢h.2) gets generalized as

/ Hg—/ BAz—JT/ wy € 217 1.3)
P3 02 02

for P3 C X, Q2 C Y with 9P3 = Q», wherews is a closed 2-form ofY representing the
second Stiefel-Whitney class Bfmodulo 2. In the simple case wheBe = 0, Y turns out
to be a Spig manifold andA1 a Spin connection. SefL6] for more details anglL7] for a
related analysis.

The problem oD-branes in group manifolds has received a great deal of attention recently
[18-23] The central issue here is the proper definitiorD&f charge and its quantization.
Consider aD-brane located in a submanifoki of a compact simple Lie grou@. The
background is characterized by a closed 3-fd#mon G, the trace of the third wedge
power of the left invariant Maurer—Cartan form@f According to[24], the DO chargeQ
of a D2-brane contained in thB-brane is defined iH3 = dL, on K for some 2-formL»
globally defined ok and is given by

Q= | Hs —/ Ly (1.4)
V3 Z2

for V3 C G, Z» C K with 9V3 = Z,. WhenH3 is cohomologically trivial,Q is quantized
asQ € 2n7Z inthe usual way. Whe#/3 has a fundamental period (levél)Q is quantized
asQ € 2n7Z. These quantization rules have to be compared (#itB).

ConsiderN coinciding D-branes of type Il string theory spanning a world-voluiién
the space—tim&. The background fields are the spin connectignthe NS NS B-fieldB,
and the R R fieldC. Further, the set of branes carrieg/@V) Chan—Paton gauge fielth
[25]. Here, we assume th&# = 0. C is an odd/even degree form field for type IIA/IIB
strings.C is not globally defined inX in general. Only its field strength = dC is. The
D-brane is carrie R R charges and thus couples te & R fieldC via the Wess—Zumino
term. Thus, the path integral contains a factor of the form

pfaff(DW)exp<i / tr exp, <|22> A AY2(Rrw2) A A™Y2(Rawo) A C) . (15)
w JT

where pfafi Dy ) is the pfaffian of the Dirac operator di and Rtw2, Rnw2 and F> the
curvatures of the tangent and normal bundles TW, NVWadind the gauge field strength,
respectivelyA denotes the A-roof genus. This factor is required and explicitly determined
by gauge and gravitational anomaly cancellafe$-28] As before, the sign of pfafiDy)
suffers in general an ambiguity which signals a global anomaly. The proper definition of the
path integral measure requires some kind of quantization condition for the R R curvature
G. This reads

/ AY2(Rry2) A A"Y2(Rnu2) A G — 71/ v e 2rZ (1.6)

U U

for any closed submanifoltd of X of dimension one unit larger tha#, whereRty2, Rnu2

are the curvatures of the tangent and normal bundles TU, NUJ, oéspectively, ana a
closed form representing the pfaffian anomaly modulo 2. In the last 3 years it has become
clear that a realistic theory dp-brane R R charges and R R fields in type Il string theory
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requiresK-theory whenB, = 0 and some sort of twisted generalization thereof when
By # 0[28-32] In any case, a form of generalized cohomology is involved which maps to
a full lattice in ordinary real cohomology as is apparent fidn®).

A generalization for open membranes is still to be worked@Rit It presumably involves
adding in the exponential in the right hand sid¢lob)a suitable integral o = 9Y leading
to a structure similar t¢1.1). This is however just a speculation for the time being.

The above examples show clearly that the geometrical framework suitable for the analysis
of these matters is provided by relative singular homology and (some generalization of)
integral cohomology. To make this clearer and also to render the rest of the paper more easily
readable, we recall briefly some of the basic definitions (see RB&fs39]for background
material).

Let X, Y be smooth manifolds witlf € X. Denote byi : ¥ — X the smooth inclusion
map. A relative singulap — 1-cycle(S,_1, Tp—2) of X mod Y is a pair of singular chains
of X, Y, respectively, satisfying

9Sp-1—ixTp2=0,  —8T,»=0. (1.7)
A relative de Rhanp-cocycle(Z,, 7,—1) of Xmod Y is a pair of forms ofX, Y, respec-
tively, satisfying

dg, =0, i*E,—-dT,-1=0. (1.8)
Locally, there are formé'p,l, ffp,g in X, Y, respectively, such that

g,=d&, 1, Tp1=i"E)1—dT, 2. (1.9)

The associated relative topological integral is the formal integral

/ E,1— / T)—2. (1.10)
Sp—l T,_2

)2

In general, its value is determined only up to a quantized ambiguity. In the simplest case,
the ambiguity is just integer valuédThis translates into a quantization condition for the
relative de Rhanp-cocycle(Z),, 1,—1) of the form

/ g, —[ T)_1€7Z (1.11)
Sp tp—1

for any relative singulap-cycle (s;, t,—1). For more general quantized ambiguities, we
have totally analogous generalized quantization conditions.

Inthe firstexampleillustrated abov@;», 9X>) is arelative singular 2-cycle anidélls, Ba2)
is arelative 3-cocycle. The argument of the exponentiél ih)is the associated topological
integral. The quantization conditig¢fh.3)holds for every relative singular 3-cydl®s, Q5).
Similarly, in the second exampléVs, Z») is a relative singular 3-cycl€Hs, L») is a rel-
ative 3-cocycle and) expresses the canonical pairing of relative singular 3 homology
and relative de Rham 3 cohomology. Quantization selects a sublattice of the latter. Similar
considerations might apply to an open membrane generalization of the third example.

1 Here and in the following, we neglect an inessential factor@pearing in the physical quantization conditions.
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Sinceé‘,,_l, ?p_z are only local forms in general, the proper definition of the topological
integral(1.10)is not a straightforward matter. However, any reasonable definition should
satisfy the following a priori requirements up to the usual quantized ambiguity. To begin
with, we expect the topological integral to depend linearly on the relative ¢§gla, T,_>)
and the relative cocyclez,, T,,_1). Further, we expect some kind of Stokes’ theorem to
hold. So, when the relative singular— 1-cycle(S,_1, T,—») is a relative boundary

Sp—1=0sp — ixlp_1, Tp2=—0tp1 (1.12)

for some singular chains,, 7,—1 in X, Y, respectively, then

/ p_]_—/ 'fp_zz/ Ep—/ Tp1, (1.13)
Sp-1 T,—2 Sp Ip—1

»
where the integrals in the right hand side are computed according to the ordinary differential
geometric prescription. Finally, we would like the topological integral to reduce to an
ordinary integral when the form8,,_1, 7,,_» are globally defined irX, Y, respectively.

So, when the relative de Rhapacocycle(Z),, T),—1) is a relative coboundary

e

gy = dép_l, Tp 1= i*ép_l — dvp_z (1.14)

for some globally defined formfs,_1, v,_> on X, Y, respectively, then

ool
S T,—2 N

P
where again the integrals in the right hand side are computed according to the ordinary
differential geometric prescription.

The plan of the paper is as follows.8ection 2we introduce the basic notions of relative
homology and cohomology. IBection 3we provide an explicit construction of the family
of relative Cheeger—Simons differential characters and show independence form covering
choices. InSection 4we analyze in detail its formal properties. Finagction 5contains
a few concluding remarks.

)

§p—1— / Up-2, (1.15)

r—1 P— Tp—2

2. Relative singular, de Rham and Cech (co)homology

This is a review of some basic material on relative singular, de Rharﬁacld(co)homo-
logy. The reader interested in a more thorough treatment is suggested to consult standard
textbooks such d84—-36]

2.1. Basic definitions and facts

Let M be a smooth manifold. L&? = {O,|a € A} be an open covering dif. Here, A
is a countable index set. We set, for 0:

Ouq,....aqp = Ogg N -+ N Og,. (2.1)
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Thekth nerve ofO is
N(O, k) = {(o0, ... , ) € A0y 0 # 0). (2.2)

O is a good covering if all the non-emptYy,,... o, are contractible.

Forr € Z, we denote bys, (M) the group of (generalized) dimensiemingular chains
of M: S,(M) =0, forr < —2,5_1(M) = Z andS, (M) is the group of ordinary smooth,
finite singular chains oM of dimensiorr, for 0 < r. A dimensionr singular chairl, is
characterized by its support supp € M. By convention, supp/, = ¢ for r < —1. For
any non-empty open subsétof M, we denote byS?(M) the group of all dimension
chainsU, such that supp/, C O. CIearIy,S,O(M) is a subgroup of,(M).

We define a homomorphisim: S, (M) — S,_1(M) by
bU, = a,U;,. (2.3)

Here, for 1< r, 9, is the customary simplicial boundary operator, whilerfet 0, 9,Ug =
ind Ug, where indy_ ,npP = )", np for adimension 0 chai}_, npP.2 bis nilpotent;

b?> = 0. (2.4)

Let® be an open covering . Forr € Z, we denote bys® (M) the subgroup of-small
elements ofS,(M): SO(M) = S,(M), for r < 0, andSP(M) is the subgroup oS, (M)
formed by the singular chains made up of simplices the support of each of which is contained
in some open set aP, for 1 < r. There exists a homomorphisin: S, (M) — S, (M),
called barycentric subdivision operator, with the following propertjds.a chain map:

gb— bg=0. (2.5)

g is homotopic to the identity, i.e. there is a homomorphismS, (M) — S,;11(M) such
that

bc+cb=¢g -1 (2.6)

Most importantly, for anyU, € S,(M) there is an integet(U,, ©) > 0 such thay*U, €
SO M) for k > k(U,, ©). g andc preserve®-smaliness: for any/, € S°(M), qU, €
S?(Jm andcU, € 8&1(1\/0. Further, for anyU, € S,(M), cU, is degenerate, i.e. itis made
up of simplices each of which, considered as a smooth map of the stangakdsimplex
into M, has rank smaller than+ 1. An explicit construction of andc can be found in
[36].

Let O = {Oq|a € A} be an open covering dif. Fork, r € Z, we denote by (M, O)
the group of finiteCech singular chains ab in M of Cech degre& and dimension-:
Cir(M,0) = 0, fork < —2,C_1,(M,0) = S°(M) andCy (M, O) is the group of
alternating map#/;, : AK1 — SO (M) such that(Uy, ). ... o = O for (g, ... , ) ¢

yees

00( seen s O
N(O» k), (Uk,r)ozo,.‘.,ozk € Sr 0%k (]W) for ((XO, cee Ofk) € N(o» kv) and(Uk,r)Olo,...,Olk ?ﬁ 0
only for a finite number ofay, . .. , ax), for 0 < k. Note that theCech singular chains are

2 In dimension 0, the definition of the boundary operatgiven here differs from the customary one of singular
homology, where vanishes. As a consequence, the zero-dimensional homology groups corresponding to the two
definitions ofb are also different. Our definition ensures that the statement dBck)holds.
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automatically®-small. TheCech singular chains dt 1 (M, O) are called simply singular
chains, on account of the definition given above. Deeh singular chains @l —1(M, O)
are called intege€ech chains, since they are integer valued.

The operatow yields a homomorphism : Ci (M, O) — Ci,—1(M, O) in obvious
fashion. It is known that the homology ¢ (M, O), b) vanishes fok > —1,if Ois a
good covering.

We define a homomorphisgh: Ci (M, O) — Ci_1.,(M, O) by

(lgUk,r)ao,... Q1 — Z(Uk,r)a,ao,.‘. JOg—1" (27)

acA
B is a differential:
g% = 0. (2.8)

The homology ofC (M, O), B) is known to vanish for > —1 for any covering?.
b andB commute

bp — Bb = 0. (2.9)

Forr € Z, we denote byD" (M) the vector space of (generalized) degrabfferential
forms of M: D" (M) = 0, forr < —2, D~Y(M) = R andD’ (M) is the vector space of
ordinary smooth differential forms adff of de Rham degreg for 0 < r. More generally,
one may consider degreedifferential forms&” which are defined only on a domain
domE” € M. By convention, donE” = M forr < —1. For any non-empty open subggt
of M, we denote by, (M) the vector space of all degreforms Z” such thatdong” 2 0.
Clearly,D" (M) is a subspace av,(M).

We define a homomorphisth: D’(M) — D"tY(M) by

d&" = dgrE". (2.10)

Here, for 0< r, dyr is the usual de Rham differential while, for= —1, dyr= 1 is the
constant 0-form corresponding to the constant. d is a differential:

d?>=0. (2.11)

LetO = {Oqla € A} be an open covering dff. Fork, r € Z, we denote by?k "(M, O) the
vector space ofech—de Rham cochains 6fin M of Cech degreé and de Rham degree
r CE" (M, 0) = 0, fork < —2,C~1" (M, ) is the vector space of form&” € D’(M)
andCh” (M, O) is the vector space of alternating maps” : A**1 — D" (M) such that
(Z ..., = 0 F0r (@0, ... .ex) ¢ N(O.k) and (2" )ay...0 € Dpy, (M) for

(@0, ... ,0r) € N(O,k), for 0 < k. The Cech—-de Rham cochains dfl*’(Mv, 0) are
called simply de Rham cochains, on account of the definition given aboveCé&tie-de
Rham cochains af~1(M, ©) are called reaCech cochains, since they are real valued.
The operator d yields a homomorphism @ (M, ©) — C~"+1(M, ©). By Poincaré’s
lemma, the cohomology at** (M, ©), d) vanishes fok > —1, if O is a good covering.

3 The definition given here of coboundary operator d in degréés a rather natural extension of the usual de
Rham differential which allows the treatment of degrekon the same footing as non-negative degree. It further
ensures that the statement ab{®d 2)holds.
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We define a homomorphistn: & (M, ©) — 17 (M, ©) by
k1

BE g ir = YD (E a1, 12100 (212)
=0
3 is nilpotent:
§2=0. (2.13)

The cohomology ofC*" (M, ©), §) is known to vanish for > —1 for any covering?.
d ands commute

ds — od = 0. (2.14)

A degreek realCech cochairg® 1 € ¢ ~1(M, ) is called integer i{ &5 )4, . oy € Z
for all (ao, ..., ) € A¥L. Such integer cochains form a lattice subgraﬂ%p‘l(M, 0)
of C*~Y(Mm, 0).

Let Uy, € Ci. (M, ©0), X" e Ck"(M, ). Fork > 0, we set

1 .
o / Ek o if r >0,
" (co, ozk)eN(O 0 Y Wkrag....

U, 85y =11 ko :
(Ukr ) F Z (Uk,fl)ao,...,ak(ak’ l)ao,.‘.,ak if r=-1,

" (@0, ... ,ax)EN(O,k)

0 if r < —2.
(2.15)

Fork = —1, similar expressions hold but with the sum over itie nerve of the covering

and the factor 1k! omitted. The integrals in the right hand side are convergent, since all
singular chains have compact support. The sum in the right hand side is convergent, as all
Cech singular chains are finite by definition. One has

(Ur,r, d85 1 = (b, B4, (2.16)
(Ui,r, 88*717) = (BUL,, 1), (2.17)

These duality relations play a fundamental role in the following.

LetO = {Oyla € A}, O’ = {O'y|a’ € A’} be open coverings of the manifol. O’ is
called a refinement o if there is a mapf : A’ — A such that0'yy C O ) foro’ € A'.
The refinement may defines a homomorphispi* : chr(m, 0y — (M, ©') of the
corresponding spaces 6ech—de Rham cochains by

* ok, r _ ,-.kr
I 8o = Efawoy e O, (2.18)

f*is acochain map, i.e.:
Fre=148f* (2.19)

The resulting homomorphism of cohomology depends only on the covefingé but not
on the refinement map.
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In the rest of this section, we shall describe briefly the main versiong dlative
homology and cohomology of for a pair of manifoldsX, Y such thatr C X.

Letp € N, p > 2. Let X, Y be smooth manifolds with di¥ > p, dimY > p — 1 and
suchthatr C X. Leti: Y — X be the smooth inclusion map.

Let O be an open covering df and letO N Y be the open covering af induced byO.

2.2. Relative homology and cohomology
A'Y relative singulap — 1-chain(S,_1, T,—2) of X is a pair of singular chain$,_; €

Sp-1(X), Tp—2 € S,—2(Y). A Y relative singulap — 1-chain(S,_1, T,—2) of X is a cycle
if

bS,—1 —ixTp—2=0, (2.20a)
—bT,_>=0. (2.20b)
A'Y relative singulap — 1-cycle(S,—_1, T,—2) of X is a boundary if it is of the form
Sp—1=Dbs, —istp_1, (2.21a)
Tp—2 = —bt,_1, (2.21b)

where(s,, t,_1) is an arbitrary¥” relative singulap-chain ofX. We denote by:;_l(X, Y),
Zf,fl(x, V), B;l(x, Y) the groups ot relative singulap — 1-chains, cycles and bound-
aries of X, respectively. Two relativey — 1-cycles are equivalent if their difference is a
relative p — 1-boundary. The equivalence classe¥ otlative singulap — 1-cycles ofX
form thep — 1th relative singular homology grOLIp);_l(X, Y).

A 'Y relative singulap — 1-chain (respectively, a cycle, a boundai§)_1, T,—>) is said
O-small if S, is O-small andT},_ is O N Y-small in the sense defined in the previous
subsection. We denote by;‘ﬂl(x, Y), lele(X, Y), Bfle(X, Y) the groups of®-small
Y relative singularp — 1-chains, cycles and boundariesof respectively. TwaD-small
relativep — 1-cycles are equivalent if their difference is@rsmall relativep — 1-boundary.
The equivalence classes@fsmallY relative singulap — 1-cycles ofX form thep — 1th
O-small relative singular homology groumﬁ?l(x, Y).

An O-small Y relative singularp — 1-chain (S,_1, T,_2) can be viewed as a pair
of Cech singular chaingS_y ,_1, T-1,,—2) with S_1 ,-1 € C_1,p-1(X, 0), T-1. 2 €
C_1,p—2(Y, O NY). We shall use both notations interchangeably depending on context.

A'Y relative integef?echp — 1-chain(Sy—1,—1, Tp—2,—1) Of X is a pair of integef:ech
chainsS,_1 1 €Cp_1,-1(X,0),Tp_5 1€ Cp_2_1(Y,0ONY). AY relative integef:ech
p — 1-chain(S,_1 1, T,—» 1) of X is a cycle if

BSp-1,-1—ixTp—2-1=0, (2.22a)
BT, 2 1=0. (2.22b)

A'Y relative integef:echp — 1-cycle(S,_1,—1, Tp—2,—1) of X is a boundary if it is of the
form

Sp-1,-1=Bsp,—1 —ixtp-1-1, (2.23a)
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Ty—2-1=—PBtp-1-1, (2.23b)

where (s, 1, t,—1,—1) is an arbitraryY relative integer(:echp—chain of X. We denote
by C(p:,l(X, Y, 0), ngl(X, Y, 0), Bgfl(x, Y, O) the groups ofY relative integerCech

p — l-chains, cycles and boundaries Xf respectively. Two relativep — 1-cycles are
equivalent if their difference is a relative — 1-boundary. The equivalence classesof
relative integelCechp — 1-cycles ofX form the p — 1th relative intege€ech homology
groupHI(f_l(X, Y, 0).

Forr e N, setl, =1{0,1,2,...,r}.AY relative Cech singularp — 1-intertwiner of
XisasequenceS_1p-1,T-1p-2; {Vi,p-1-klk € Ip-1}. {Zk p—2-klk € Ip—2}; Sp-1,-1,
Tp2-1) With S_1, 1 € C_1p-1(X, O), T_1p-2 € C_1,2,ONY), Vi p-1-k €
Chp-1-k(X,0), Zi p—2—k € Chp2k(Y,ONY), Sp_1,-1 € Cp_1,-1(X,0), Tp_2,_1 €
Cp—2,-1(Y, O NY) satisfying

S_1.p-1 =8V, p-1, (2.24a)
T 1,p-2=BZop-2 (2.24b)
bVi p—1-k = BVis1, p—2—k + (=D*isZk p—2—k, 0<k < p—2, (2.25a)
bZ p2-k =BZiy1,p-3k 0<k=<p-3, (2.25b)
Sp_1-1=bV, 10, (2.26a)
Tp2_1=—(=1)P"20Z, 20. (2.26b)

Note that(S, -1, T,-2) € Z3° (X, Y) (cf. Eq. (2.202) and (2.20pand(S -1, -1, Tp—2,-1)
€ Zg_l(X, Y, O) (cf. Eq. (2.22a) and (2.22p)A Y relative singulaéechp— 1-intertwin_er
(S—1,p-1, T-1,p—-2; {Vi,p—1-klk € Ip-1}, {Z p—2—klk € Ip—2}; Sp—1,-1, Tp—2,—1) Of X is
said trivial if

S 1p1=bs 1, —is1p1, (2.27a)

T_1p-2=-btg, 1, (2.27b)

Vip—1-k = bvk p—i + Puks1 p-1-k + (DFiszi o1, 0<k<p—1, (2.28a)

Zip—2-k =bz p_1 k4 By, p-2-k» 0<k=<p-2, (2.28Db)
Sp—1,-1=Bsp,—1 — ixlp-1-1, (2.293)
Tp 2 1=—Ptp-1-1, (2.29b)

wheres_l,,, € C_l’p(X, 0), t1p-1 € C_l,p_l(Y, ony), Vk,p—k € Ck,p_k(X, 0), for
O0<k=<p zpi1k€Cpa1sxOny),forO<k <p-15,_1€Cp_1(X,0),
tp—1,-1 € Cp—1,—1(¥, O NY) are such that

s—1,p = Bvo,p, (2.30a)
1-1,p-1= —P20,p-1, (2.30b)
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Sp,—1= bUp,O» (231&)
tp-1-1=—(=1Pbz,_10. (2.31b)

We denote by @El(x, Y, 0), BISS (X, Y, O) the groups ot relativeCech singulap —
1-intertwiners and trivial intertwiners dof, respectively. Two relative — 1-intertwiners are
equivalent if their difference is trivial. The equivalence classeg odlativeCech singular
p — l-intertwiners ofX form a group Hfil(X, Y, ©). The notion of intertwiner given here
is the generalization of that of ‘element’ (9] suitable for relative homology.

A Y relative de Rhanp-cochain(Z?, TP~1) of X is a pair of de Rham cochair&” e
DP(X), TP~1 e DP~L(y). A Y relative de Rhanp-cochain(£”7, Y7~1) of X is a cocycle
if

dE? =0, (2.32a)
*EP —drP~l=0. (2.32b)
A Y relative de Rhanp-cocycle(E?, TP~1) of X is a coboundary if it is of the form
gP =dgP1, (2.33a)
TPt = i*gPml — duP 2, (2.33b)

where (67~ vP=2) is an arbitraryY relative de Rhanp — 1-cochain ofX. We denote
by Cia(X, V), ZIs(X, Y), Big(X, Y) the vector spaces of relative de Rhanp-cochains,
cocycles and coboundariesXfrespectively. Two relative-cocycles are equivalent if their
difference is gp-coboundary. The equivalence classe¥ oélative de Rhanp-cocycles of
X span thepth relative de Rham cohomology spalig (X, Y).

AY relative de Rharp—1-cochain 57, T?~1) can be viewed as a pairébch—de Rham
cochaing =47, y=tr~Yywith 2-+7 e ¢~ 1P (X, 0), vt e LYy, OnY). We
shall use both notations interchangeably depending on context.

A Y relative realCechp-cochain(Z7: 1, YP~1-1) of X is a pair of reaCech cochains
gr-1eccrl(x,0), rP1-1 e cr-1-1(y, O nY). A Y relative realCech p-cochain
(gr—1, rr=1-1) of X is a cocycle if

sEP~1=0, (2.34a)
#gr~l_srrl-l—q (2.34b)
A'Y relative reaCechp-cocycle(2”-—1, TP~1-1) of X is a coboundary if it is of the form
gt g1l (2.353)
bt = prgp bl syrm2 L (2.35b)

where (67~1-1 yP=2-1y is an arbitraryY relative realCech p — 1-cochain ofX. We

denote byCE(X, ¥, 0), ZE(X, Y, 0), BL(X, Y, O) the vector spaces of relative reaCech

p-cochains, cocycles and coboundariesXgfrespectively. Two relativg-cocycles are
equivalent if their difference is p-coboundary. The equivalence classe§ o€lative real
Cechp-cocycles ofX form the pth relative reaCech cohomology spadél (X, Y, O).
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Forr € N,setl” ={0,1,2,...,r}.AY relativeCech—de Rham-cointertwiner ofX isa
sequenceE 17, Y-Lr-l Qb p=lok g e =1y {Oh P27k K € P72} gt Lol
whereg=17 e ¢cLr(x, 0), v-Lr-t e cLrY(y, OnY), @k r-1-k e chr17R (X, 0),
Okr=2k ¢ chr=2ky ony), grt e cri(x,0), vrtt e et 0N )
satisfy

§E7LP = d0r 1 (2.36a)
sy—Lr=l — _ge0r-2 4 x0pr-1 (2.36b)
dbr1k — gok-1rk 1 <f<p_1, (2.37a)
dekr—27k — sk-Lr=1-k L (_pykprhr-lk ) <p < p_2 (2.37b)
dzr 1 = sr—10, (2.38a)
drr—1-1 = (—1)P-LseP—20 1 (—1)P-Lp*r-10), (2.38b)

Note that(E7, TP~1) € Zo(X, Y) (cf. Eq. (2.32a) and (2.32pand (27 ~1, rP~1-1) €
Zé(X, Y, O) (cf.Eq. (2.34a) and (2.34pWe call a¥ relativeCech—de Rham-cointertwiner
(g=btr rrte=l @k r= kg e pr71y, @k 2Rk € P72y gpt el of X
trivial if

E—l,p — d%-—l,p—l’ (239a)
T_l’p_l _ i*%_—l,p—l . dU_l’p_Z, (239b)
Qk’p_l_k — dwk,p—Z—k + ka—l,p—l—k, 0 < k < p— 1, (240a)

Ohr=27k = dghr=3-k 4 spk=Lr=2-k | (_pkprefr=2k o<k < p-2,

(2.40b)
E‘n’_l _ (Sép_l’_l, (2.41&)
Tp_l’_l — i*%,p—l,—l _ (Svp—z,—l’ (241b)

whereg~1r~1 e 7P, 0), v P2 € P2, 0N Y), WfPm2K € Chpm2k
(X.0),for —1 < k < p—1,6°7%F% c cbr3 Ky ony), for -1 <k < p-2
gr-L-1 e cr=t-Y(x, 0), vP~2-1 € P~2~1(y, O N Y) with

gLlr=1_ Lp-1 (2.423a)
v b2 — gLp-2, (2.42b)
gr—1-1_ ,p-1-1 (2.43a)
P21 = (—1P2pr—2-1, (2.43b)

We denote by Z] o(X, Y, 0), BIZ (X, ¥, O) the spaces of relative Cech—de Rham
p-cointertwiners and trivial cointertwiners &f, respectively. Two relativp-cointertwiners
are equivalent if their difference is trivial. The equivalence classas refative Cech—de
Rhamp-cointertwiners of{ form aspace I-@dR(X, Y, ©). The notion of cointertwiner given
here is the generalization of that of ‘coelement[89] suitable for relative cohomology.
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2.3. Integral relativeCech cohomology and relative differential cocycles

A Y relative integeiCech p-cochain(&7-~1, TP=1-1) of X is a pair of integeCech
cochainsg?~1 e ¢& 1x,0), P11 e ch 1- v, 0N v). Clearly, a relative integer
Cech cochain is also a relative reéch cochain AY relative integerCech p-cochain
(Er~1, TP=1=1) of X is a cocycle if it satisfie€q. (2.34a) and (2.34hyith (271,
rr—1- 1) replaced by 71, YP-1-1) so that it is a cocycle also when seen as a rel-
ative realCech cochain. AY relative integeiCech p-cocycle (£7-—1, T7-1-1) of X is
a coboundary if it satisfieEq. (2.35a) and (2. 35b/)/|th (51’ L-1 yp=2-1y replaced by
anyY relative integeiCechp — 1-cochain(é?~1-1, H»=2-1), so that it is a coboundary
also when seen as a relative r€aich cochain. We denote kﬁ@Z(X, Y, 0), Z”Z(X, Y, 0),
BéZ(X , Y, 0) the groups ot relative intege€echp-cochains, cocycles and coboundaries
of X, respectively. Two relative integgr-cocycles are equivalent if their difference is an
integerp-coboundary. The equivalence classe§ oélative integelCechp-cocycles ofX
form the pth relative integeéech cohomology groquZ(X, Y, 0).

A Y relative differentialp-cocycle ofX is aCech 6-tuplg zr—1, yr-1-1, grp-1-1
r*r=2-1 Ep.=1 yr-1-1) wheregr—1 ¢ ¢ ~Y(x,0), vr-1-1 e ¢y, on
v), 8011 ¢ erLL(x, 0), Y21 ¢ P2 4,0 N ), ErL e chtx, 0),

H &

Trl-lech” L7y, 0 nv), satisfying
55%—1 =0, (2.44a)
*Eht_syr -1 —, (2.44b)
sErp~b-t = gr-1_ gr-1 (2.45a)
=L -1 _ syep—2-1 _ yp-1-1 _ yp-1-1 (2.45b)
sEP~1=0, (2.46a)
*Ep~l_syr~t-l=o (2.46b)

Note that(z»~1, rP~171) e ZE(x, v, 0) and (EP~1, 1TP7171) € Z2 (X, Y, O) (cf.
(2.342) and (2.34p) A Y relative differential p-cocycle (£7-~1, rr—t-1
E*P‘l’—l, r*r—2-1. Ep.—1 7r-1-1) of X is a differential coboundary if

Ep,fl — agp*l,*l, (247a)
rp-l-1_ prgp—1-1 suP—2-1 (2.47b)
Zrr-1-1 gp 1-1_ gp—1-1 (2.48a)
T*p—Z,—l — pp—2-1_ UP—2>—1’ (2.48b)
Ep— 55,; 1-1 (2.49a)
pr-b-l_ prgp-lol =21 (2.49b)

where? 11 e cr2=Y(x, 0), 0P 2"t e P2 7Ly, 0nY), 6P e C”_l’_l(X 0),
or-2-lech” 2=y 0N ). We denote by ZB(X, Y, 0), BDA(X, Y, O) the groups ot



368 R. Zucchini/ Journal of Geometry and Physics 46 (2003) 355-393

relative differentialp-cocycles and coboundariesX¥frespectively. Two relative differential
p-cocycles are equivalent if their difference is a differential coboundary. The equivalence
classes of relative differentialp-cocycle ofX form a group H[@(X, Y, ©). An analogous
notion of differential cocycle has been introduced for the absolute cd$8]in

A Y relative differential p-cocycle (g7-—1, Yr=1-1, gxp=1.-1 ysp-2.-1. gp.-1
Tr-1-1) of X is torsion if it is of the form(2.47a)—(2.49byith £7—1-1 ¢ cP~1-1(x, ),
pr=2-1 ¢ cP—2-1(y, Ony) subject to the conditiose?~1~1 € C%’_l(X, 0),i*Ep~L-1_
sor—2-1 ¢ Cgfl’fl(Y, onY). Torsion differential cocycles form asubgroupgDX’, Y, 0)
of ZDZ(X, Y, ©). Beinginvariantunder translation by BDX, ¥, 0), ZDZ,(X, Y, O) projects
to a subgroup HB,(X, ¥, 0) of HDZ(X, Y, O).

2.4. Relative homology an@-small homology isomorphism and the relati®ech
singularlCech—de Rham isomorphisms

The barycentric subdivision operatgr(cf. Section 2.) acts on relative chains in ob-
vious fashion. For any relative chait§,—1, T)—2) € Cf;fl(X, Y), there is an integer
k(Sp-1, Tp—2,0) > 0 such that(¢"S,_1,¢"T,—2) € C;(Zl(X, Y) is O-small fork >
k(Sp-1, Tp—2, O). By the chain relatiorf2.5), if (S,—1, T)—2) € Z;_l(X, Y) is a relative
cycle, then(¢*S,-1,¢"T,—2) € 232 (X, V) also is. If (Sp-1, Tp-2) € BS_;(X.Y)is a
relative boundary, the(zl"S,,_l, qkTp_z) € szl(X, Y) also is and the corresponding rela-
tive Chain(qksp, qkt,,_l) is O-small fork large enough (cfEqg. (2.21a) and (2.21)p)Using
the chain relatior§2.5) and the homotopy relatiof2.6), it is possible to construct a chain
equivalence of the complex df relative singular chains and that 6-small Y relative
singular chains for any open coveridof X [36]. Hence, the corresponding homologies
are isomorphic:

Hy (X, Y) = H;(Zl(x, Y). (2.50)

We say that the open coverii@@of X is a good covering of the paX, Y, if O is a good
covering ofX andO NY is good a covering of (seeAppendix A).

An O-smallY relative singulap — 1-cycle(S,—1, Tp—2) € Z;’Sl(X, Y) and aY relative
integeréechp—cycle (Sp—1,-1,Tp—2-1) € ngl(X, Y, O) are said to be compatible if
they fit into someY relative Cech singulap-intertwiner (S_1, p—1, T—1, p—2; { Vi, p—1-k}
{Zk p-2-k): Sp-1.-1, Tp—2.-1) € Z|§§l(x, Y, ) (cf. Egs. (2.20a), (2.20b), (2.22a), (2.22b),
(2.24a)—(2.268) FromEgs. (2.21a), (2.21b), (2.23a), (2.23b), (2.27a)—(2.20)llows
that anyO-smallY relative singulap — 1-boundary(S,_1, T,_2) € BffZl(X, Y) is always
compatible with anyy relative intege(:echp-boundary(Sp,l,,1, Ty 1) € Bg_l(X,

Y, O) through a trivial intertwiner in @El(x, Y, O0). Therefore, the compatibility rela-
tion in lele(X, Y) x Zg_l(X, Y, ©) defined above induces a compatibility relation in
Hfffl(X, Y) x Hgfl(X, Y, ©) at the level of relative homology. A fundamental theorem

states that, whe® is a good covering of the pak, Y, this relation is actually an isomor-
phism
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Hp_l(X, )= Hp_l(X, Y, 0). (2.51)

Its proof is analogous to that of the absolute cg&H. On account of the isomorphism
(2.50) we find out that, for such coveringﬁ[‘f_l(X, Y, O) does not depend of® up to
isomorphism.

A Y relative de Rhanp-cocycle(&7, rP~1) ¢ ZgR(X, Y) and aY relative realCech
p-cocycle(EF-~1, vP~1=1) € ZL(X, ¥, ©) are said to be compatible if they fit into some
relativeCech—de Rham-cointertwine 5~17, y—Lr-1, (Qkr-1-ky (gkp—2-ky. gp.-1
P17 e ZIZ R(X. ¥, O) (cf. Eqs. (2.32a), (2.32b), (2.34a), (2.34b), (2.36a)—(2.88b)
FromEgs. (2.33a), (2.33b), (2.35a), (2.35b), (2.39a)—(2.4itdllows that aY relative
de Rhamp-coboundary &7, Y7~ 1) € BgR(X, Y) is compatible with any relative real
Cech p-coboundary(57-~1, v7~1-1) ¢ BL(X, Y, 0) through a trivial cointertwiner in
BIZ r(X. Y, 0). Therefore, the compatibility relation B (X, ) x ZE(X, ¥, O) defined
above induces a compatibility relation HﬁR(X, Y) x H(’:’(X, Y, O) at the level of relative
cohomology. A fundamental theorem states that, wlés a good covering of the palf,

Y, this relation is actually an isomorphism:

Hio(X,Y) = HE(X, Y, 0) (2.52)

so that for such coveringdZ (X, ¥, ©) does not depend of up to isomorphism. Again,
the proof is analogous to that of the absolute ¢a4¢

2.5. Integrality in relative cohomology

As is well known, given any Abelian grou, by dualization via the functor Hogt(-, G)
of the singular chain complex of a manifol, one can construct the singular cochain
complex of M with coefficients inG. When an open coverin@ of M is given, one can
similarly defineO-small singular cochains ar@ech singular cochains with coefficients
in G. This allows one to set up a cohomological framework that parallels completely the
original homological one (see Ref84,36]for background material). The generalization
to the relative case is straightforward.

Proceeding as outlined above, it is possible to introduce the relative real singular coho-
mology space4? (X, Y) and the relative integer singular cohomology grdi@(X, Y).

The natural inclusion of the group of relative integer singular cochains into the space of
relative real singular cochains is a cochain map. Thus, there is a canonical homomorphism
HY (X, Y) — H{(X,Y) of relative singular cohomology. Its kernel @K, Y) is the
relative singular torsion subgroup bfé’Z(X, Y). Its rangef{s”Z(X, Y) is the relative integer
singular cohomology lattice d (X, V).

The above setting has a faithful translation in relativech cohomology. Le© be
a covering ofX. The inclusionC¢, (X, Y, 0) — CE(X.Y,0) is a cochain map (cf.
Section 2.3 Thus, it induces a homomorphistl, (X, ¥, 0) — HE(X,Y,0) of the
relative integerCech cohomology group into the relative réxch cohomology space.

Its kernel Toé(X, Y, O) is the relativeCech torsion subgroup cﬁ(’:’Z(X, Y, O). Its range

AL, (X, Y, 0) is the relative integeCech cohomology lattice di#Z(X, ¥, O).
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If O is restricted to be a good open coveringXf Y (cf. Section 2.4, then relative
singular cohomology and relativ@ech cohomology are completely isomorphic:

HY (X, Y) Z HE, (X, Y, 0), (2.53)
Torf (X, Y) = Tord(X, ¥, 0), (2.54)
HY(X,Y) = HE(X, Y, 0), (2.55)
HY (X, 1) = HE, (X, Y, 0). (2.56)

The above isomorphisms are consistent: the isomorph{8rbg) and (2.56pre the re-
striction the isomorphism§.53) and (2.55)respectively. Further, the homomorphism
HZ, (X, Y,0) — HE(X,Y,0) is obtained by the composition of the homomorphism
HS”Z(X, Y) — HEY(X, Y) with the isomorphism§2.53) and (2.55)The proofs are formally
analogous to that of the isomorphigg52) though extra work must be done to show the
isomorphism of0-small relative singular cohomology and relative singular cohomology.
Note that, by(2.53)—(2.56) HZ, (X, ¥, 0), Tor2(X, Y, 0), HE(X. Y, 0), HE, (X, Y, O) are

all independent from the good open coverifigip to |somorphlsm

Let O be a good open covering df, Y. A Y relative realCech p-cocycle (571,
P71 e Z&(X, Y. 0) is said cohomologically integer if it fits into sonie relative
differential p-cocycle (g7~1, yr=1=1; gxp-1-1 prp=2-1 gr.—1 yr-1-1) ¢ ZDZ
(X, Y, O) (cf. Egs. (2.34a), (2 34b), (2 44a)—(2. 4)3ki§rom Eqs (2. 35a) (2.35b), (2. 47a)—
(2.49D) it follows that anyY relative realCech p-coboundary(g?~%, 17=1-1) ¢ BZ
(X, Y, O) is always cohomologlcally integer, being part of a dlﬁerentlal coboundary in
BD@(X , 0). We denote b)ZCZ(X Y, O) the subgroup ofZ2 c(X, Y, 0) formed by the
cohomologlcally integer relative re@lechp cocycles. Being invariant undertranslatlon by
Bg(x Y, 0), Z£,(X, Y, O) projects to a lattice oHZ(X, ¥, O). Clearly, ZZ, (X, Y, 0) <

(X, Y, O) (cf. Section 2.3 and the lattice mentioned is precisely the relative integer
éech cohomology Iatticéng(X, Y, O) introduced above.

A 'Y relative de Rhanp-cocycle(&?, vP~1) e ZgR(X, Y) is said cohomologically inte-
ger, if it is compatible with some cohomologically integerelative realCech p-cocycle
(gr=t rr=1=1) e 7L, (X, Y, 0) for some good open coverii@of X, ¥ (cf. Section 2.3
A Y relative de Rhamp-coboundary 57, Y7~ 1) € BgR(X, Y) is always cohomologically
integer, since itis compatible withtarelative reaCechp-coboundary 27 —1, T7=1-1) ¢
Bg(X, Y, ©), which is necessarily cohomologically integer, for any good open covéling
We denote b)ZgRZ(X, Y) be the subgroup OZgR(X, Y) formed by the cohomologically
integer relative de Rharp-cocycles. SincigRZ(X, Y) is invariant under translation by
BiR(X, Y), ZLr, (X, Y) projects to a lattice subgrouij, (X, Y) of Hix(X, Y). For any
fixed good covering), every cohomologically integer de Rhasrcocycle(E7, P71 e
ZSRZ(X, Y) is compatible with a cohomologically integ&rrelative realCech p-cocycle
(gr—1 rr=1-1 e ZL (X, Y, 0). Further,H ., (X, Y) corresponds precisely to the rela-
tive integerCech cohomology IattchpZ(X, Y, ©) under theCech—de Rham isomorphism
(2.52)
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From(2.52), (2.55) and (2.56nd the above discussion, one deduces the isomorphisms

Hgp(X,Y) = H (X, 1), (2.57)
Hipg (X, Y) = HE (X, V), (2.58)
the isomorphisn{2.58)being the restriction of that ¢2.57)

3. Thereative Cheeger—Simons differential characters

Let p, X, Y satisfy the assumptions stated at the en8adtion 2.1and letO be a good
covering ofX, Y (cf. Section 2.4.

3.1. Construction of the mag$’ and 1§

We now define two basic realvalued functiomg, 1€, of the appropriate relative data.
In view of the construction of relative Cheeger—Simons differential characters, we analyze
in detail the properties 01_{9 159, when the relative data are varied by trivial amounts. Here,
we systematically use the notati@ 15)for conciseness. 5

The first function,]f, depends on the following relative data: a relatech singular
p—1l-intertwiner(S_1,,—1, T-1,p—2; {Vk,p-1-klk € Ip—1}. {Zk p—2-klk € Ip—2}; Sp-1,-1,
Tp_p_1) € Zlgfl(x, Y, O) (cf. Egs. (2.24a)—(2.26l)a relativeCech—de Rham-cointert-
winer (8=17, Y=hr=t Qb =1k ik e [r1y (@F P2k € [r2); Ert el €
Z1Z r(X. Y, O) (cf. Egs. (2.36a)—(2.38p)It is given by

p—1 p—2
19 =3 (=D Vi part, Q27 =3 (DM Zep2 sk OFP7FH). (3.1)
k=0 k=0

When the relative arguments are varied by arbitrary amounts (generically denoted by
the variationA 7§ of I{ is given by

pil pfz
AI](? = Z(_l)k<vk,p717k, AQk’p_l_k> _ Z(_l)k<zk,p727kv A@k,p—z—k)

k=0 k=0
p—1 p—2

+ Y CDHAVE po1p, 25771 - S DR (AZ oo, OF P72
k=0 k=0
p—1 p—2

+ Z(_l)k(AVk,p—l—k, AQRPIhy Z(_l)k(AZk,p—Z—k, A@kP=2ky
k=0 k=0

(3.2)

If (AS—1,p-1, AT 1 p2; {AVi p—1—k}, {AZ p—o—i}; ASp—1,-1, ATp_2_1) € Blgfl
(X, Y, O) is atrivial relative intertwiner (cf. Eq8.27a)—(2.299)and(AE 17, AT 1P 1,
(APl (A@kP=27ky AgP =1 ATP=171) € BIZ (5(X, ¥, O) is a trivial relative
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cointertwiner (cfEgs. (2.39a)—(2.41p)one has

AIP = (S_1p-1. 0P = (Tg pp, v P72 + (s_1 . E1F)
—<t—1,p—1, T—l,p—1> + (5—1,/7, dé_l’p_l)
N e R B Co L ORISR Ly
(Tp-2-1, 0" 27 4 (5p, -1, E7 7Y = (111, 7777
Hsp1, 86PN — (tpq g, EPTHTE — S0P 2T (3.3)

The second functionlg), depends on the following relative data: a relative integech
p — lcycle (Sp-1,-1. Tp-2-1) € Z5_1(X,Y,0) (cf. Eq. (2.22a) and (2.22)a rel-
ative differential p-cocycle (g7-—1, yr=1-1, gp-1-1 yxp-2-1. gp.-1 pp-1-1) ¢
ZD{(X, Y, O) (cf. Egs. (2.44a)—(2.46})It is given by
I8 = (D" (Sp-1-1, B ETY — (T, o 1, TP727H). (3.4)
When the relative arguments are varied by arbitrary amounts (again generically denoted by
A), the variationA 1§ of IS is given by
AI§ = (1) M(Sp-11, AEPTETY (T, 5 4, AT 727
HASp-1 -1, FPTET — (AT 0, T2
+H(ASp_1, 1, AE*PTEYY (AT, 5 g, ATFPT2Th] (3.5)

If (ASp—1,-1,AT,_2_1) € Bgfl(X, Y,0)is a relativeCech boundary (cfEq. (2.23a)
and (2.23b)and(AEP- L, AP L1 Ag*P— L AYHP-2-1 AEP L ATPLL) €
BDZ(X, Y, 0) or ZDE(X, Y, O) is either a relative differential coboundary or a torsion
relative differential cocycle (cEqs. (2.47a)—(2.49h)then

AI = (=D (Sp-1, -1, 8”5 = (T 2,072 7Y
Hsp1, BV = (tpo1 1, YPE Y (sp g, 887707
—(tp-1,-1, & = SuP AT 4 (= D)PTH(Spon -1, BN
~(Tpo—1, OP 727 4 (sp 1, EP 7Y — (tpor o0, TP77Y
Hlsp -1, 887NN — {1y, FEPTE T — 500727, (3.6)
Let(Sp-1,Tp-2) € Z;’gl(X, V), (8P, P 1) e ZgRZ(X, Y) be, respectively, a@p-small
relative singulap — 1-cycle (cf.Eq. (2.20a) and (2.20@nd Section 2.2 and a cohomo-
logically integer relative de Rhamrcocycle (cf.Eq. (2.32a) and (2.32l@ndSection 2.5.
From the discussion @ections 2.4 and 2,%ve can carry out the following construction.
(Sp-1, Tp—2) can be extended to some relatvech singulap — 1-intertwiner(S_y, ,—1,
T-1,p-2: Vi, p—1-,} {Zk p—2-4}; Sp-1,-1, Tp—2,-1) € Z|[C,51(X, Y, O) (cf. Egs. (2.24a)—
(2.26b)and Section 2.3 By standardCech singular techniques, one easily sees that the
intertwiner(S_y, -1, T-1,p—2; {Vk, p—1-k} {Zk, p—2-}; Sp—1,—1, Tp—2,—1) is defined up to
a trivial relativeCech singular intertwiner of the forif2.27a)—(2.29bwith s_1 , = 0,
I_1p-1= 0.
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(P, TP-1) can be extended to some relatech—de Rhanp cointertwiner(Z 17,
r-Lr-L (@kr-ioky ekr=2ky grol remloly € 712 (X, Y, O) (cf. Egs. (236a)—
(2.38b)andSection 2.4. By the standard:ech—de Rham techniques, itis easy to see that the
cointertwiner(Z~1r, r—1r-1, (Qkr-1-k) (gkpr—2-k}. gr.—1 yr-1-1y s defined up
to atrivial relativeCech—de Rham cointertwiner of the fo(t39a)—(2.41byith &~ 1r—1 =
0,v P2 =0.

As (BP, TP~ 1) is cohomologically integer, the relative re@bchp cocycle (&1,
rr=t-Yy e ZZ,(X.Y,0) is cohomologically integer as well (cBection 2.5. Then
(gr—1, rr-1-1fitsinto some relative differentigl-cocycle(z?-—1, Yr—1-1, g*p-1-1
T*r=2-1 gr-1 7r-l-1) € ZDE(X, ¥, O) (cf. Egs. (2.44a)~ (2.46ta)nd5ecuon 2.5.As
(2P~ rr-1-1yis defined only up to a relative re@kech coboundary of the for(2.35a)
and (2.35b) the relative differential cocyclgz?—1, rr-1-1, gep-1-1 psp-2-1.
gr-—1 1r-1-1) s determined up to a torsion relative differential cocycle of the form
(2.47a)—(2.49h)ndeed, when the relati@ech torsion Tcﬁ(X, Y, O) is non-vanishing, the
cohomology class of the relative integgech cocyclgZ” ~1, TP~ in HZ, (X, ¥, O)is
notuniquely fixed by that of the relative re2ch cocyclez?—1, Y=+~ in HE(X, Y, O)
and, thus, the ambiguity of the relative differential cocycle is not in general a relative dif-
ferential coboundary.

Using the relative homological and cohomological data obtained in this way from
(Sp—1, Tp—2) and(E7, Y771, we set

=10 +19. (3.7)

Since, however, those data are not determineShys, 7,—2) and(Z?, TP=1) in unique
fashion, as explained abov¥’ is affected by an ambiguitg 7€ which we are now going
to compute.

From the above discussion, by inspection(®8f3) and (3.6)it appears that the rele-
vant ambiguities of the definition of the relative intertwingry ,_1, 7_1, ,—2; { Vi, p_l_k},
{Zk p—2-k); Sp-1.-1, Ty—2.—1), the relative cointertwingrg ~1-7, v—1r=1; (Qkr=1-ky
{@kp=2-ky, gp=1 ypp-1- ~1) and the relative differential cocycleul’ -1 yr-1-1.
Frp=L=1 pep=2, 1 &Zr.—1 7r-1-1) are those parameterized bythe relatlvelntégmh
chaln(s,,,_l, t,,_l,_l), the relative reaCech cochaing?~1—1, vP=2-1) and the relative
real Cech cochairng?~+~1, H»~2-1) subject to the condition that the relative cobound-
ary (8&P—L-1 prgp—1-1 _ 55r-2-1) s integer (cf.(2.27a)—(2.29b), (2.39a)—(2.41b),
(2.47a)—(2.49bpand the previous discussion). The crucial point to be noted here is that
the relativeCech cochairig?~1~, v»~2~1) parameterizing the ambiguity of the relative
Cech cocyclgZP:~1, vP~1-1) is the same for both the relative cointertwiner and the
relative differential cocycle Taking this into account, fr¢di3) and (3.6with s_; , =0,
t_1,p-1=0,1P"1 =0,071r=2 = 0, we find that

O = ()P U(Spor,—1, 877 —(Tpop o, OP727H) (51, EPTY
—(tp-1-1, VP72 o (sp 1, 88PN — (1, g, *EPTEE
—50P~27h]. (3.8)
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AI9 is clearly non-zero in general. Thug is not unambiguously defined. However, the
above expression suggests that, under certain condittoff$ might be integer valued. In
such a casd,® would be unambiguously defined modulo integers.

If (gr—L-1 HP—-2-1) were an relative intege€Cech cochainAI® would be integer.
However, because of torsion, the relat®ech cochairc?—1-1, H7=2-1) is real, being
only subject to the condition that the relative coboundagy 11, j*&ér-1-1_g§pr-2-1)
is integer. So the first two terms of the right hand sidé3o8) and thusA 7€ are generally
not integer valued.

If we insist thatA 7€ be integer, we have to restrict the ambiguity inherentin the choice of
the differential cocyclgzr-—1, yp—1-1. gxp-1-1 y*p-2.-1, Sp.=1 Jr-1-1ywhichis
responsible for the non- mtegrallty afr— 1, -1 pp- 2.~ —1). This can be achievedin two steps.

We first restrict the choice of the relative integ@ech cocycle(ZP-—1, Tr-1-1) py
fixing its cohomology class it Z(X Y, ©) among those classes H@Z(X Y, O) whose
image inHZ (X, Y, O) is represented by the relative ré2tch cocyclg &1, r7~1-1)
(cf. Section 2.5. By inspecting(2.47a)—(2.49bjor given (£7~1~1, vP~2 1) itis easy to
see that the relative re@lech cochainé?—1-1, {p—2-1) is restricted in this way to be
integer up to a relative relech cocycle.

Such a cocycle parameterizes the set of the possible choices of the relatiGecbal
cochain(g*~1-1 y*r-2-1) for given (57—, yr-1-1) (Er-—1 7r-1-1) |t is nat-
ural to identify two choices ofz*P~1—1 r*r=2-1) if they yield the same value af®
modulo integers for al(S,_1, T,—2) € Zsp(zl(X, Y). From (3.8), on account 0f2.22a)
and (2.22b)it is apparent that two choices a&*7—1.—1 r*r=2-1) gre equivalent when
their difference is a conomologically integer relative cocycle$efction 2.%. Thus, the set
of equivalence classes of choices(@&*?~1~1 r*r=2-1) is parameterized by the quo-
tientzg_l(X, Y,0)/ Zgil(x, Y, O) or, what is the same, by the relati@ech cohomology
torusH(’:’_l(X, Y,0)/ i{é’il(x, Y, O). From its definition, it is clear that the parametriza-
tion is non-canonical, depending on an arbitrary choice of a reference relatdiecochain
(g*p~1-1 r*r=2-1y corresponding to the origin of the torus.

We next restrict the choice of the relative r€ech cochain g+~ -1, y*r-2-1) py
fixing its image inHZ (X, Y, 0)/ i, (X, Y, 0).

The relative realCech cochain&?—1-1, {r~2-1) is finally restricted to be integer
up to a cohomologically integer relative cocycle. Fr¢8i8), using(2.22a) and (2.22b)
again, it follows then that, once the above choices are made, the ambigiitis integer
valued. 5

Recalling the isomorphisms of singular, de Rham &@weth cohomology discussed
in Section 2.5we conclude that we can unambiguously define a family of n&ps:
z;?l(x, Y) — R/Z by

o9, T: 2,1 =1° modZ (3.9)
for (Sp—1,Tp—2) € foZl(X, Y), depending on a choice of a relative integer singular co-

homology class irHé’Z(X, Y), a representative=?, 77~ 1) ¢ Zé’RZ(X, Y) of the image of
such class iIHé’RZ(X, Y) shown explicitly and a point in the relative de Rham cohomology
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torusHé’le(X, Y)/Hi; L(X, Y). From(3.1), (3.4), (3.7) and (3.9)t appears tha®? is Z
linear in the first argument.

When(S,-1, T)_2), (P, TP~y are shifted by amounts given by the right hand sides
of (2.21a) and (2.21bwith s_1 ,, r_1, ,—1 O-small, and2.33a) and (2.33byespectively,
one has

APO(S, T; B, 1) = (S_1,p-1, & 2P7Y) — (T_1 po2, v 1P72) (5.1, E1P)
—(t_1,p-1, rtr 4 (5—1,ps de~ 11
(11, p—1, P —du™HP72) modz (3.10)

as follows readily from(3.3).

For reasons explained above, tﬂggl(x, Y)/Hé’,;ZI(X, Y) parametrization of the maps
@9 is not canonical. The changes of the parametrization are in one-to-one correspondence
with the shifts in the relative de Rham cohomology torus. By the isomorphisms of de Rham
andCech cohomologies @ections 2.4 and 2,Bny such shift is represented equivalently
by either a relative de Rham cocyalg ~1~1, ¥~1~2) defined up to cohomologically
integer relative de Rham cocycles or a relative @ath cocycle(/7?~+-1, xr-2-1)
defined modulo a cohomologically integer relative réaich cocycle. The variation of
@9(S, T; &, 1) caused by the shift is given by

APO(S, T; 2, 1) = (1P (Sp_1.—1, TP7L"Yy — (T, 5 1, ZP7271] modZ
(3.11)

as follows from the first two terms ¢8.8)with (£7~1-1, HP~2-1) replaced by 17711,
»r=2-1) 1tis straightforward to show that

APO(S, T; B, 1) = —[(S_1.p—1, [T P71 —(T_1 p2, Z"1P7%)] modZ. (3.12)

Indeed, consider the functidif, Eq. (3.1) If we vary theCech—de Rham-cointertwiner
(g=tr, y=tr-l(Qkr=1-ky - (gkr=2-ky; gp.=1 yr=1-1) py a vanishing amount
(AE7LP AT LY (AQRPTITRY (AR P27y AgP L ATPTLL) thenATY = 0
trivially. On the other hand, the totally vanishing trividéch—de Rham-cointertwiner can
be written in the form(2.39a)—(2.41bwith (¢~1r—1 v=1r=2) = (7-1pr-1 x-1p-2)
(gp~L-1 yr—2-1y — (qyp-1-1 yr-2-1yfor suitableCech—de Rham cochain »—2—*
ok-P—3-k S0, by(3.3), Alf = 0 is given by the difference of the two above expressions.

3.2. Dependence @ on covering choices

It is important to compare the result of the above construction for two choices of the
underlying good open covering &f, Y, O(1), O(2). The basic ideas consists in construct-
ing suitable sequences Gfech (co)chains of the covering(1) U O(2) (disjoint union)
interpolating between the givefhech (co)chains of the individual coverin@gl), O(2).

To this end, we explicitly indicate théech degree with respect the two coverings. So,
Uk.1n, SQY, IS aCech singular chain otech degreg, [ with respect taO(1), 0(2), re-
spectively, and dimension. Similarly, A%!", say, is aCech—de Rham cochain @fech
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degreek, [ with respect ta0(1), O(2), respectively, and form degree Accordingly, we
have two operatorg;, B2 defined as in2.7) and obeying2.8). Similarly, we have two
operatorssy, 82 defined as in2.12)and obeying2.13) Further, the pairg, 61 and 32,
82 independently satisfy the duality relatioix17) Conversely, we have just one oper-
ator b and one operataf, which are the same as before and satisfy the duality relations
(2.16)

A Cech singular chaiwy ;,, is aCech singular chain a®(1) U O(2) of Cech degree
k+1+1.ACech singular chain of the forii, 1, (U-1,,,) can be identified with €ech
singular chalrU,fl) 1n (U( 1ln) of O(1) (O(2)) of Cech degreé (I) having the property

of being®(2)-small (O(1)-small). The operatgs appropriate for th€ech singular chains
of O(1) U O(2) is the sumBy + (—1)4edD+1p, while that for theCech singular chains
of O(1) (O(2) is B1 (B2)- Similarly, aCech—de Rham cochait®" is aCech—de Rham
cochain ofO(1) U O(2) of Cech degreé + 1+ 1. A Cech—-de Rham cochain of the form
Ak=Ln (A=LLn) can be identified with €ech—de Rham cochartfl) Ln (A(j Lmy of O(1)
(0O2)) of Cech degreé (/). The operatos appropriate for th€ech—de Rham cochains of
O(1) U O(2) is the sumsy + (—1)9e9D+1s, while that for theCech—de Rham cochains of
O (0(2)) is 81 (82).

When stating that a sequence of (co)chains forms arelative (co)chain, (co)cycle, (co)bou-
ndary, (trivial) (co)intertwiner, etc., it is necessary to specify the underlying covering and
the relevang or é operators. If no label is attached to the (co)chains, itis understood that the
covering isD(1)UO(2) and theg or § operators arg +(—1)9e9D+1 8, 514 (—1)9edD+1s,

If the label 1 (2) is attached to the (co)chains, it is understood that the coveriddljs
(O(2)) and theg or § operators ar@y (82), 51 (82).

SetJ, = {(k,)|k,l € Z,0 <k, [,0<k+I<r},K, ={klk € Z,0<k <r},r €.

We say that a sequence of chaii$s.1, 1, -1, T-1,—1,p—2; { Vi1, p—1—k—il(k, ) € Jp_1},
{Zi1,p—2-k—ilk, D) € Jp_2}; {Sk,p—1-k,—1lk € Kp_ 1% {Tk,p—2— kll|k € Ky- 2}1) interpo-

lates two relativeCech singulap — 1- mtertwmers(S( ) T(l) 1p-2} {V( )1 o 1|
ke Ip-1}, {Zk,—l,p—Z—k|k € Ip-2}; Sél—)l,—l,—l’ T(l)z -1, 1) (S(—zi —1,p-1’ TEZJ? —1p-2!
{V(Zl)k o1kl € Ipoa), {Z(—Zi,k,p—z—ﬂk € Ip-alk s —1p—1,-1’ T(Zl,pr,fl) (cf.
Egs. (2.24a)—(2.26)if S_1, 1 p—1, Vi1, p—1—k—1» Sk, p—1—k,~1 are Cech singular chains
of X, T-1.-1.p-2, Zkt. p—2—k—1, Tk, p—2—k.—1 areCech singular chains irf and

S_1,-1.p-1 = P182V0,0,p-1 (3.13a)

T_1,-1,p—2 = —B1B2Z20,0,p-2; (3.13b)

bViet, pm1—k—1 = B1Vitr1.t, p—2—k—1 + (=D BaVi 11 p2—i
(=D Y Zk ok,

bZi 1 p—2—k—1 = B1Zks 1.0, p—3—k—1 + (D 1 BoZk 141, p—3—k—t,
O0<k,l, O<k+I1=<p-3, (3.14b)
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Sk.p—1—k,—1 = BVi p—1-1,0, (3.15a)
Ti.p—2-k—1 = — (=D DZ p_2_1.0 (3.15b)
with
2
SY =S 11p1 SY L, 1=S1 1,1 (3.16a)
2
Tﬁl]?,—l,p—Z =T-1-1p-2, Til)y_l,p_z =T_1-1p-2 (3.16b)
v B2V V@ —1)*B1V,
k—1,p—1—k = P2Vk0.p-1-k> 1kp 1-x = D" B1Vok p-1-ks
O<k<p-1, (3.17a)
1 2
Z,(c,),l,p,g,k = —B2Zk.0.p—2—k Z(*i,k,p*Z*k = —(=D*B1Zok, p—2—k.
O<k<p-2 (3.17b)
2 _
SO 1 1= BSp-r0-1. S, 1 1= (D" B1S0 o1, (3.18a)
1 2 _
T, 1 1=Belp20-1. TZ, 5 1= CDP28iT0, o 1. (3.18b)

It is straightforward to check that the above relations are compatible with the relations
(2.24a)—(2.26bdpbeyed by the relativ€ech singular intertwiners.

Forr € N, defineJ” = {(k,D|k,l € Z,-1 < k,I,-1 < k+1 <r}, K" = {klk €
7, —1 < k < r}. We say thatasequence of cochaigs b~ 1.7, y—1.-Lr-1. (Qklp=2-k=1)
(k,1) € JP=2) (@klLP=3=k=l (k1) € JP—3); (ERP Ik e KPY (ThP2 R 1k €
KP~1}) interpolates two relativ€ech—de Rham—cointertwiners(u(l)l —Lp T(_l)l —Lp= 1,
(20 " ke Y e I e A El Tl Y, (&,
T Lk, p—1—k

ey
—1-1,p-1 1 Lk, p—2—k 20 —Lp—1 ~—1p-1-1
2 {2y k e 174, {6, ke "2 B PN 1, )

(cf. Egs. (2.36a)—(2.38p)if 5~L-Lr-1 Q" bp=i-k=l gkp=1-k-1 gre Cech-de Rham
co-chains ofx, Y1 -1r=2 @klp—2-k-l ykp-2-k-1 araCech—de Rham cochains ih
and

5,5 L-1p — g0-1r-1, SpEL-Lp — g~10p,-1 (3.19a)

Slrfl,fl,pfl — _d(H)O,fl,p72 + i*QO,fl,pfl’
SorLLr-l = _ge=t0r-2 4 jr-10p-1 (3.19b)

Akl P2kl _ 5 Qk=LLp=1-k~I 4 (_qyk+lg okl=1p-1-k-I
—1<kl, O<k+i<p-—2 (3.20a)

d@k,l,p737k71 — al@kfl,l,pfszfl + (_1)](4’182@1(,[71,}7727](71
+(_1)k+l+1i*9k,l,p—2—k—l

—1<kl O<k+I<p-—3, (3.20b)



378 R. Zucchini/ Journal of Geometry and Physics 46 (2003) 355-393

dEk,pflfk,fl — Slgkfl,pflfk,o + (_1)k+1829k,p727k,0, (321a)

d')r‘k,pfsz,fl — (_1)p71(8l@k71,p727k,0 + (_1)k+182@k,p737k,0

H(=DPLirQhrm2h0) (3.21b)
with
~—1-1, 11 ~—1,-1, 11
Eg T=ETTML By P=ETTR (3.22a)
-1-1p-1 _ ~-1-1p-1 -1-1p-1 _ ~—1-1p-1
Ty =7 p== T, =7 p== (3.22b)
_Ql(c,l;l,pflfk _ Qk,—l,p—l—k’ ‘Q(;,k,pflfk _ ‘Q—l,k,p—l—k7
O<k=<p-1, (3.23a)
@l(ci)—l,p—Z—k _ @k,—l,p—Z—k’ @(—S,k,p—Z—k _ @_1,](,],_2_1{’
O<k=<p-2, (3.23b)
~p,—1,—1 —~p.—1.—-1 ~—1,p,—1 —~1p—1
g4 =&r= BT =8700T, (3.24a)
p—1-1-1 __ ~p-1-1-1 -1p-1-1 _ ~-1p-1,-1
Ty =7? , T, =7""F . (3.24b)

It is straightforward to check that the above relatibase compatible with the relations
(2.36a)—(2.38bpbeyed by the relativ€ech—de Rham cointertwiners.

Using the interpolating sequences of (co)chains introduced above, one defines for 0
k<p-—-2

k
Slk — Z(‘/l,k—l,p—l—k, 619[—1,](—1,]7—1—/{ + (_1)14'16291,/{—[—1,17—1—]()
=0

k
+ Z(Zl,k—l,p—Z—k, 81@171%71,[)727/{ + (_1)[4‘182@1,/{7171,17727/(). (325)
=0

Using the relation§2.16), (2.17), (3.14a), (3.14b), (3.17a), (3.17b), (3.20a), (3.20b), (3.23a)
and (3.23b)one finds that, for K k < p — 2,

P k1 p—1-k P “Lkp-1-k
DNV 2y po1ie £ ) = CDNVIL ke pe1mi 22 )
k(D) k—1p-2—k P —Lkp-2—k
—(=DHZ ok O )+ (DHZE ok O )
+S1 — Sw—1=0. (3.26)

4 In these formulae, it is assumed conventionally thatéayh—de Rham cochaif"™ = 0 whenevek, I do
not satisfy the restrictions listed at the beginning of this paragraph.
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Hence,

p—2
(h) k —1,p—1—k k() k,—1,p—2—k
Z( bt (Ve Za p—1-k £203 >_Z(_1) (221 pom Oy )

— @ Lk, p—1—k k)2 Lk p—2—k
_Z(_l) (VIik p—1-k 2 - +Z( DHZE0 4 poi O P
+81p_2— S10=0. (3.27)

From the definition(3.25), using(2.17), (3.17a), (3.17b), (3.23a) and (3.28hth k = O,
one easily sees that

) 0.-1p-1 o 0.-1Lp-2 @ 101

S10 ==(Vo. 21, p-1> 23 )+ {Zo 1,p-2 O )+ {Vii0,p-10 202 )
@ 1,0.p-2

—Z50p-22F0 " ) (3.28)

Further, from the definitior§3.25), using(2.16), (2.17), (3.14a), (3.17a), (3.20a), (3.20b)
and (3.23a)one finds

p—1
S1p-2 = Z(Vk,p—l—k,o, §1. 8L p=1mk0 4 (L q)ktls, Qkp=2k0)
k=0
p—2
+ ) (Zkp-2-1,0, 8108 HP2TRO 4 (—)ltlgeh pm37k0
k=0
-1 —2- 1 1,-10
(=Dl Rk v o el T
~1,y2 ~1,p-1,0
—(=1LP 1(v(1)p Lo 9(2)'” ). (3.29)

Letl] oM Oh (2)) be constructed accordirfg.1)using the above (co)intertwiners marked by
the label 1 (2). Substituting3.28) and (3.29nto (3.27)and using3.15a), (3.15b), (3.21a)
and (3.21b)one finds

p—1
0@ o ke 1k —
Il( ) _ 11 ( ) — Z(Sk,p—l—k,—lv dk,p 1 k, l)
k=0
p—2
- Z(Tk,p—Z—k,—la rhp=2=k=1y (3.30)
k=0
We say that a sequence of cha'(riskp 1—k,—1lk e Kp,l} {Te, p—2—k,—1lk € Kp_2})
interpolates two relative integ&echp — 1- cycIes(S T1o1-1 Tlﬂlfz 11 (S(Z{p 11

Tizl),,,_z,_l) (cf. Eq. (2.22a) and (2.22))if Sk, p—1-k—1 are mtegerCech chains ofX,
Tk, p—2—k,—1 are intege(:ech chains it and

BrSis1, p—2—k—1 + (=D 1 BaSk po1k—1 — isTk p2—k—1=0, 0<k<p-2,
(3.31a)
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~B1Ti1, p-3—k—1 — (=D BT p 2 k1 =0, O0<k<p-—3 (3.31b)
with

Si,l_)l,_l’_l = B2Sp-10-1. 5(_211,_1,_1 = (=17 8180, p-1,-1. (3.323)

T,Sl_)z’_l,_l = B2T)-20,-1. szl),,,_z’_l = (—1)P?B1To, p-2,-1. (3.32b)

The above relations are compatible with the relat{@r22a) and (2.22bpbeyed by the
integerCech cycles.

We say that a sequence of cochaifghr—1-%-1jk e kP}, (Y*r-2-k—Ljk ¢ gP=1;
(grhr=2-k-Lip e grY (yhrSk-lp e g2y ERr-lhlk ¢ kP,
(T*P=2-k=1k ¢ KP~1})interpolates two given relative different'plcocycles(Efl’)’l"1,

p—1,-1,-1, ,;,*p—l,—l,—l *«p—2,—1,—1, ,:_,p,—l,—l sp—1,-1,-1 ,:,—l,p,—l -1p-1-1,
Ty, B T I ) ) (B T ;

oreLp=1-1  w—1p-2-1 A-Lp—-1 -1 p-1-1 .
Ep) . Yo HEg T P ) (cf; Egs. (2.44a)—(2.46)1v) if
gkp-1-k-1" gsk.p—2-k.—1 gre realCech cochains ok, £%?~1-%~1s an integeiCech
cochain ofX, T*p=2-k-1 y*.p=3-k-1 gre realCech cochains of, T*P~2-%~-1js an

integerCech cochain of such that
spEFLrkml ks, gkl 00 1<k < p+1, (3.33a)

’

i* Ek,pflfk,fl _ Slrkfl,pflfk,*l _ (_1)k+152frk,p727k,71 — 0

—1<k=<p, (3.33b)
Sy EHLp—lohml y (qykrls, gekop—2-k =l Ghop—lokb -l ghop—lok -l
-1<k<p, (3.34a)
i gk p=2-k =1 _ g psk=Lp=2-k=1 _ (_qyk+lg, sk, p—3-k-1

= Thp=2-k=1_ ykp-2-k-1 1 < p—1 (3.34b)
SERLp—kl kg Eho-lk-l g0 1<k < p+ 1, (3.35a)
i ERr—1-k =1 _ 5 gh—Lp—1-k-1 _ (_q)k+lg ghp-2-k-1 _ g
1<k<p (3.35b)

with

Efl,)—l,—l — gr-1-1 E(—Z)l,p,—l =g Llpr-t (3.36a)
,r([i)—l,—l,—l — yrl-1-1 T(E)l’p_l’_l = r-Llr-1-1 (3.36Db)
Szkl,;fl, L-1_ gep-l-1-1 Ezsz)l,pflfl = g+ Llr-1-1 (3.37a)

yP=2-1-1 _ up-2,-1,-1 yr-lp=2-1 _ qs—1p-2-1 (3.37b)
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é,f;l,)fl,fl _ Br-Li-1 é.(fz)l,p,fl = 5-1r-1 (3.38a)
,%(,1)_1,—1,—1 _ pp-l-1-1 fﬂé)l»p—l,—l — y-Lp-1-1 (3.38b)

(cf. footnote 4). It is straightforward to check that the above relations are compatible with
the relationg2.44a)—(2.46bpbeyed by the relative differential cocycles.

Using the interpolating sequences of (co)chains just introduced, one defines

3
I

k=1, p—1—k,—1 k1g, ok, p—2—k,—1
So=) (Skp-1-k—1,81E8" 5P + (=D reE*P )
k=0
p

N

Z(Tk,p—z—k,—L i* gk p—2-k—1 _ g qprk—1.p—2-k—1
0

k=
_ (_1)k+152}/~*k,p—3—k,—1>.

(3.39)
Using(3.34a) and (3.34bpne has immediately
p-1 p—2
Sp=— Z(Sk,p—l—k,—l, Ek’p_l_k’_l> + Z(Tk,p—Z—k,—l» Tk,p—Z—k,—l)
k=0 k=0
p—1 p—2
+ Y (Skptk1, EPTETY N T ok, TEPTEETY (3.40)
k=0 k=0
On the other hand, usin@.17), (3.31a)—(3.32b), (3.37a) and (3.3#)e finds
11, ¢ o%—1,p—1,-1 ) w—1,p—2,—1
S2= (DS a1 8T ) T, 0 T )
@ —~kp—1,—1,—1 @ wp—2.—1,—1
- (Sp—l,—l,—l’ d(]{; )+ (Tp—Z,—l,—l’ T(]_[)? )] (3-41)
Now, we note that
p—1 p—2
> (Skp-1k1. BRI SN T o g 1, TRPTERTh =0 modzZ.
k=0 k=0
(3.42)

Let If(l) (If(z)) be constructed accordin(@.4) using the integeéech cycle and the dif-
ferential cocycle marked by the label 1 (2). Fr¢8240) and (3.41)one has then

p—1
O(2) [OJ¢N) =k, p—1—k,—1
LY -1 == (S p-1k-1, 8P )
k=0
p—2

+ Z(Tk,p—z—k,—lv Tk’pizik’fl) modZ. (3.43)
k=0
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Let (S,_1,Tp_2) € ZSO(’)(X Y), (87, 77~Y € Z}, (X, Y) be respectively ad(i)-
small relative singular cycle =1, 2 (cf.Eq. (2.20a) and (2.20@ndSection 2.2and a co-
homologically integer relative de Rham cocycle E. (2.32a) and (2.32landSection 2.3.
Let us now repeat the construction describe8éction 3.lindividually for each of the cov-
ering O().

() 7D )=

Then, the relative singular cycles” 1-1p-1 111,02 (S—1-1,p-1,T-1,-1,p-2),
2 2 - . .
(S(_} 1 p-1s Tﬁl) 1 2) = (8-1,-1p-1,T-1-1,-2) extend toCech singular intert-

(1) (€N} (D D .o D
winers (S T2g 1p 2 WV Ze po1 b W22 o a5 Syl 211 Ty —a )
(S(Z)

(2) 2 2 2 (2 :
1-1p-1 T2 pon WV pori 250 g ok h $20 pg 200 T2 p—p 1) defined

T(l) g

up to shifts by trivial intertwiners leavings® 1-1p-2) 8531, 1

1,-1p-1°
9, ,_2) unchanged, respectively (Sections 2.4 and 31

In similar fashion, the relative de Rham cocyod@iil) —Lp T(I)l l”’_1) = (g 1-1r,

r-1-1p-1y (u(z)l ~Lp r(;)l “Lr=ly _ (g-1-1p y-1-1r-1) extend toCech—de

. 1,-1,p 1-1,p-1, [ Sk—1p—1—k k,—~1,p—2—ky. =p,—1-1

Rha;n 100|1ntertW|P e;S(u(l) 1,-1, T(l) 1.k 7{1(2(13) 1k}, {2@ (kl) 1 ’1u(1) ’
P - P o p= —Lkp-1- —Lkp— o~ Lp

T<1>1 ) 1) P P o) 1O h Fon

T, """ defined up to shifts by trivial cointertwiners Ieavi(x@'(l) Py T,

(u(’z)l —Lr T(;)l —Lp- l) unchanged, respectively (Sections 2.4 and 3)1In turn, the co-

homologlcallylntegerreﬁechcocyclesu(pl) 11 Ty L=ty (:(—2)1,,;,—1 T&)l”’_l’_l)

so obtained extend to relative differential cocycl& ™ -1 T(’i)l -1 S;"l’; 1-1-1
«p=2-1-1 pAp—1-1 £p-1-1-1  —Lp—1 r—Lp-L—1 _s1p-1—1 roi—1p—2,—1

T(l) ol (B LT B T ’
“1p-1 5-1p-1.-1

E) T(z) ), defined up to shifts by torsion differential cocycles leaving
=D —-1,— p—1-1-1 ~—1p,—1 -1,p-1,-1 : :

u((jl)3 ) T(l) ), (B L7 ) unchanged, respectively (§ections 2.5
an .

Using the above two sets of relative data, we can compfte, i = 1, 2, using(3.7).

Since the choice of the relative data is not unigii&?” is affected by an indetermination
A0 given by(3.8).

Next, our aim is to evaluate the different&® — 19D modulo integers by constructing
suitable interpolating sequences between the relative data of the two coverings involved and
exploiting the result$3.30) and (3.43)In order to do that, we have first to find out under
which conditions such sequences do indeed exist.

Let us assume thaﬂ(_l) 110 Tfll) 1p-20 {V(l)l poio o {Z(l) 1p—2— o Sﬁ,l)l 11

D 2 2 2 2 2

T, 10 (85 gy T20 s WV pa kb V25 ook} S50 po 21
(2)

T

“1p-2. l)aretworelatlvé:echsmgulap 1-intertwiners (cfEgs. (2.24a)—(2.26pb3uch

that(S(li “1p T(ll) 1 72) = (S( T(Z) »). Then, after possibly shifting
the mtertwmers by tr|V|aI mtertwmers (cﬁqs (2. 27a5) (2.29bpreserving this condition,
there exists a sequence of chaif§sy, _1, p—1, 71,1, p—2; { Vi1, p—1—k—1}, { Zk1, p—2—k—1};
{Sk, p—1—k,—1} {Tk, p—2—k,—1}) interpolating the intertwiners, i.e satisfying3.13a)—
(3.18b)
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Here is a sketch of the proof. We begin with noting thatlJif; , is a Cech singular
chain withn > —1 such thapB12U 1., = 0, then there ar€ech singular chainSg+1,.,,
Uk.1+1,» suchthaty; , = ,31Uk+1,1,,,+(—1)k+1/32Uk,1+1,,,. This follows from the triviality
of the 81, B2 homology forO(1), O(2)-small chains, respectively, when> —1 and the
fact that, if eithert < —1 or/ < —1, thenV;;, = 0 for anyéech singular chaingy ; .
Set

_ @ 2
S 1-1p-1= Sfl,fl,pfl =S 11 -1 (3.44a)

Ty 1p2=T% 1, ,= =79, 2 (3.44b)
Then,(S_1,-1,p—1, T-1,-1,,—2) is a relative singulap — 1-cycle:

bS1-1p-1—ixT-1-1p-2=0, (3.452)

—bT_1-1,-2=0. (3.45h)

Hence, there are a chalfp g ,—1 of X and a chainZg,,—» of Y satisfying(3.13a) and
(3.13b) By substituting(3.13a) and (3.13kinto (3.45a) and (3.45bpne finds tha3.14a)

and (3.14bhold fork, I = 0 for some chain¥1,0 ,—2, Vo1, p—2 0f X andZ1 o p—3, Zo,1, p—3

of Y. The proof of(3.14a) and (3.14bjs completed by a straightforward induction on
the value ofk + 1. Sk p—1-k -1, Tk, p—2—«,—1 are then defined according {8.15a) and
(3.15b) Next, one verifies that relation8.16a)—(3.18bXefine two relativeCech sin-
gular p — 1-intertwiners extendlngS(l) C1p-10 T(ll) 1 _2) (S(_zi 1p-10 le) 1 _2)

Thus, these intertwiners must equal the 0r|g|nal mtertwmers up to tr|V|aI shlfts preserving

(S(li 11 Tfll) _1p-2) (S(zi C1 -1 T£21) _1,p—2) (see the discussion &fection 2.,

The sequence of chalmsskp 1-k,—1}, {Tk, p—2—k,—1}) interpolates the integéﬁech cy-
cIes(SLl) 11 T 2 _1-1)s (S(Z)p 1 T(z)p _1), 1.e. it satisfieq3.31a)—(3.32h)
These statements are straightforwardly vern‘led

Assume thatO(1) U O(2) is a good covering of the paX, Y and that(&

—1,-1,p-1_ ; ~k,—1,p—1—k k.—1,p—2—k 1,-1 ~p-1-1-1, , —1,-1,
LT (2N 8 (G TR =T R 1) ), (B

~1,-1,p-1 1k, p—1—k Lk, p—2—ky. ~—1p,—1 ~a—1p—1-1 .
Ty 0 {82, IRICPS B ERT L Ty ) are two relative

Cech-de Rhamp-cointertwiners (cf. Egs. (2.36a)—(2.38p) such that (E(_l)l’_l”’,

T(_)l Ll (g 21 L T‘l ~1r=1) Then, after possibly shifting the cointertwiners
by trivial cointertwiners (cqus (2.39a)—(2.41ppreserving this condition, there exists a
sequence of  cochains (E~b~br y-L-Lr=l. (oklp=2-k=ly (gklp=3-k=I.
(gk-p—1-k =1y (pkp=2-k—1}) interpolating the cointertwiners, i.e. fulfilling3.19a)—
(3.24b)

Here is a sketch of the proof. A8(1) U O(2) is a good covering of the pal, Y, the
cohomology isomorphisr{2.52)holds true. Set

-1,-1,p
@ ’

=—1,-1, g=L-Lp _ o—1-1p
& P=E, =& , (3.46a)

—-1,-1,p—1 _ A—L1-1p-1 -1,-1,p— 1
S Y =75 (3.46b)
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Then,(&-1-1r r—-1-1r-1y|s a relative de Rham-cocycle:

dz~1-tr =, (3.47a)

gttt —dr-t-trl =, (3.47b)

This can be extended to &\(1) U O(2) relative cointertwiner, which is precisely the se-
quence of cochains interpolating the given relatiech—de Rham cointertwiners we are
looking for. Indeed(3.19a)—(3.21bare nothing but the transcription (f.36a)—(2.38bior
the coveringO(1) U O(2). One verifies that relation®.22a)—(3.24byefine two relative
Cech-de Rham p-cointertwiner extending (E(_l)l’_l’p, r L=ty (E(_z)l’_l’p,

D
T(;)l’fl‘pfl). Thus, these cointertwiners must equal the original cointertwiners up to trivial

shifts preservingE(_l)l’_l”’, T(E)l’_l’p_l), (E(_Z)l’_l"’, T(;)l’_l’p_l) (see the discussion of

Section 2.4
. -1,-1,p -1,-1,p-1 gfl,fl,p -1,-1,p—-1
If the relative de Rham cocycle€ ;) 7, 1y, ) (B T Ty ) are

cohomologically integer, the relative réch cocyclesEf’l’)_l’_l, Tl L1y (E(_Z)l””_l,
T(E)l’p_l’_l) are also cohomologically integer (c&ection 2.% and, therefore, fit into
two relative differentialp-cocycles(Ef’l’)_l"_1, T(ﬁ)_l’_l’_l; Ezkl’;_l’_l’_l, T(*l’)’_z’_l’_l;
~p,—1-1 £p-1-1-1 ~—1p,—1 —1p-1-1 —*x—L1p-1-1 ~*—1p-2-1 2-1p—1
“n T ) (B T e T B
Yo 7777 (cf. Egs. (2.442)—(2.46p)In that case({ g% P~1+—1} {yhr=2-k—1}) ex-

tends to a sequence of cochaingskr—1-k-1y (ykr=2-k-1y. gk p=2-k -1y
(Y*kp=3—k.—1y. ( Bk.p=1-k—1y " (pkp-2-k -1y} interpolating those cocycles, i.e. satisfy-
ing (3.33a)—(3.38h)after possibly shifting the latter by torsion differential cocycles (cf.
Egs. (2.47a)—(2.49b))reservingEf’1')7l’71, rptobhy (E(fz)l””fl, T(;)l'pfl’fl). More-

@
over, when the relative intege€ech cocycles(é{’l’)_l’_l, ff(’i)_l’_l’_l), (ET(_Z)l””_l,

?(5)1”’_1’_1) are representatives of the same relative integer singular cohomology class
via the isomorphisn{2.53) the shifts by torsion differential cocycles preserve that coho-
mology class.

Indeed, the relative de Rham cocygle 117, v=1-1r-1) is cohomologically in-
teger, so that the relative re@ech cocycle({E%P~1-%~1} (ykpr-2-k-1}) is similarly
cohomologically integer. Thus, it can be extended toi) U O(2) relative differ-
ential cocycle, which is the desired interpolating sequence of coch@ir3a)—(3.35b)
are indeed the transcription (2.44a)—(2.46bjor the coveringO(1) U O(2). One then
check that relation§3.36a)—(3.38bylefine two relative differentigb-cocycles extending

E(”l’)_l’_l, T(’i)_l’_l’_l), (.’5'(—2)1””_1, T(;)l”’_l’_l). Thus, they must equal the given relative

differential cocycles up to a torsion differential cocycle preser(lmg)fl’fl, Tﬁ;l’fl’fl),

=~—Llp—-1 —1p-1-1 P s Ap,—1-1 5p-1-1-1
(&) 1o ). When the relative integ&ech cocyclesu(l) T ),

(é‘(_z)l””_l, }A’(E)l”’_l’_l) are representatives of the same relative integer singular coho-

mology class, the interpolating sequence of cochains can be chosen so that the relative
integerCech cocycle({ £%P~1-*-1} (kpr-2-k—-11) is also a representative of that co-
homology class. In that instance, relaticmsd (3.38b) and (3.38kjefine two relative
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integeréech cocycles representing again that cohomology class and thus equivalent to

~p,—1,-1 p—1-1- a,—l,p,—l c>—1,p—-1,-1, . . . 4
|(c;;](1) T(l) ), (u(z) ,’r(z) ) in relative integer Cech cohomo-
y.

The above statements remain true if one of the two coverings$3a), is substituted
by a refinemen®’(2) which is a good covering of, Y (cf. Sections 2.1 and 2)4

Indeed, ag?'(2) is a refinement of)(2), the associated refinement mgpinduces a
homomorphismy; of the space relativ€ech—de Rham cochains @f1) U O(2) into that
of O(1) U O'(2), which preserves the de Rham dbelch degrees, commutes wittand is
such thatf; 81 = 8115, f382 = &'2f5. Then, sequence of cochains obtained by applying
f5 to the interpolating sequence of cochaingxfl), O(2) is interpolating with respect to
o), 0'(2.

Itis easy to see that the above conditions on the covetititis O(2) are trivially satisfied
for O(1) = O(2), so that, in this special case, interpolating sequences of cochains exist.
Then, interpolating sequences exist also wti8) is a refinement oO(1).

In summary, we have shown the following.

First, there indeed exists a sequence of ché$ns 1,1, T-1, -1, p—2; { Vi1, p—1-k—1},
{Zi1, p—2—k—1}; {Sk, p—1—k,—1}, {Tk, p—2—k,—1}) interpolating the intertwinerss(_li_l’p_l,

D @ @ @ @ 2
T2 1 p2s Wi e po1ah 2 poich Splac1 -0 TyZp 21 1) (823 9 1

2 @ 2 2 (2)
Ty C1pe 2’{V—lkp 1k} {Z_l_’k’p_2 oS et I 1p-2 _q) suchthatthe sequence

of chains({ Sk, ,— 1 k,—1} {Tk, p—2—k,—1}) interpolates the integ&ech cycles{Sélllﬁly,l,
T(l)2 _1-1s (s 1p 11 T(zl)p 2._1), possibly after shifting the intertwiners by trivial

intertwiners Ieavmqs(l) 1, T(l) 1 _2) (S(Z) 1-1p-1° szl) 1p— ») unchanged.
Secondly, provided the good coverlngfs(l) (9(2) satisfy the conditions illus-
trated above, there indeed exist a sequence of cochgish—17, r-1-1r-1,
{.Q"”vl’—z"‘—’} (OFLp=3=k=Dy. gk p=1-k =1y (kp-2-k—1}) interpolating the cointer-
. ——1-1p L-1p-1, (b=l p—1-ky [ k—Lp—2—k\ op—L—1 p—1—1-1
twiners (._,(1) , T(l) ; {.Q(l) } {0(1) FE T(l) ),

(S, i b b g i g e
quence of cochaing{zkr-1-k -1y {Tkl’ 2=k, {"*k A NG o S

(Ekp=1-k=1y  (ykp-2-k-1}) jnterpolating the differential cocycles Z(y, -1

p—1-1-1 —xp-1-1-1 L wp-2-1-1 2p-1-1 £p-1-1-1  ——Lp—1 ~—1p-1-1,
To CoSe T S T4 1 (Eg T T
BT g YT By T TP ), which are compatible in the sense that

the end of the first interpolating sequence equals the beginning of the second, as shown

by the notation, possibly after shifting the cointertwiners and the differential cocycles

by trivial cointertwiners and torsion differential cocycles Ieav{Egl) “Lr T(I)l l”’71),

(_,(2)l —Lr T(Z)l —Lr= 1) unchanged. Further, when the relative mteQIHch cocycles

("” -1-1 T”)l -1 (_4(_1’7 -1 f”(;)l’”_l’_l) represent the same relative integer sin-
gular cohomology class, the shifts by torsion differential cocycles preserve that conomology
class.

Then, by(3.7), (3.30) and (3.43)for given (S,_1, T,—2) € foz({)(x, Y),i =12,
(&P, 1P € Zh, (X, 1), the difference®@ — 19U is integer, provided the relative
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data employed in the construction B/ are suitably chosen. Since, however, this may
not be the case, we see that a weaker result holds in general, namely

192 L A19@ _ 9D _A19D =0 modz, (3.48)

where the indeterminatiormlo("), given by(3.8), account for the shifts relating the relative
data used if®® and those for which the interpolating sequences exist.

As discussed irBection 3.1the indeterminationa /°® are not integer in general. By
demanding thant:'{’l) -1 T(’i) 1-1-1y (é'(_z)l””_l, ?(;)1”’_1’_1) are representatives of a
fixed cohomology class di%, (X, ¥) via (2.53) the A7°%) are given modulo integers by
expressions of the form of the right hand sidg®fL1)

As we have seen iection 3.1for a given good coverind, the Z linear functional
@9 : Z;?l(X, Y) — R/Z, Eq. (3.9) depends on a choice of a relative integer singular
cohomology class irH&(X, Y), a representativez?, Y7~ 1) ¢ ZSRZ(X, Y) of the im-
age of such class iWé’RZ(X Y) and a point in the relative de Rham cohomology torus
Ha” l(X’ Y)/H (X Y). The parametrization of the family of ma&® in terms of

HgR (X, Y)/H” l(X Y) is however not unique. A change of the parametrization changes
@9 by an amount given bg3.11) and (3.12)Thus, after fixing the cohomology class in
Hé’Z(X, Y) and its representative=?, TP-1) ¢ Zé’RZ(X, Y), there still is no natural way
of comparing the map®©®, 9@ for the good covering®(1), O(2), unless we have
a mapping relating theiHé’le(X, Y)/Hé’gzl(x, Y) parametrizations. This is precisely the
origin of the residual indetrminations7/°® of the previous paragraph.

Then, from(3.9) and (3.48)we can draw the following conclusions. L&(1), O(2) be
two good coverings oK, Y and0(12) be a common refinement ¢¥(1), O(2) which is
also a good covering. L&S,_1, T, ») € foz(llz)(x, V), (5P, vP 1 e ZgRZ(X, Y). The
pairs of good covering®(1), O(12) andO(2), O(12) satisfy the requirements sufficient
for the existence of interpolating sequences of cochains. Then

%0, 181 =0 T 8], i=12 (3.49)

provided theH p’l(X Y)/Hles (X, v) parametrization op°®, #°12 s suitably chosen.
2 o
Thus, for(S,_1, T,_2) € ZSO“)(X ), (B2, 777Y e Zh, (X, ).

PV (S, T, 5,1 =02, T; 5,1 (3.50)

provided theHé’le(X, Y)/Hles (X, v) parametrizations op®®, $°@ are suitably cho-
sen.

Let us assume that the family of good open coveringX of is cofinal in the family
of open coverings ok (cf. Sections 2.4 and 2)5The conditions under which this is the
case will be analyzed separatelyAppendix A Then, in the sense stated(®50), © is
independent from covering choices.
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3.3. Extension o#? to non-small relative cycles

Since any dependence on a choice of open covefing unnatural, we would like to
extend theZ linear map®? : 752, (X, ¥) — R/Z of Section 3.1t0 aZ linear map® :
Zf,fl(x, Y) — R/Z independent fron®. This can indeed be done using the barycentric
subdivision operatag introduced inSection 2.1as follows.

Let us fix the cohomology class m‘s’i(){, Y), its representatives?, TP~ 1) € Zé’RZ(X,

Y) and the point of the toruHé’F;l(X, Y)/Hé’gzl(x, Y) involved in the definition ofp®. Let
(Sp-1,Tp-2) € Z;_l(X, Y) be a general relative singular— 1-cycle. Pick a good open
coveringO of the pairX, Y. For a sufficiently largé > O, (q"Sp_l, qkT,,_g) € Z;(Zl(X, Y)
is O-small. We then set

(S, T; 8,1 =S, 4" T; 5. 7). (3.51)

Next, we shall show that the right hand sidg®f61)does not depend af andk, making
the definition well posed.
From(2.5), fork,l > 0, one has

max(k,l)—1
bc®D 4 c®Dp = gk — gt c*D = sgnk —1) - ¢ Z q. (3.52)
r=min(k,l)
So, by(2.20a) and (2.20b)
bc®DS, 1 +inc®DT, 5 =gkS, 1 —¢'S, 1. (3.53a)
bc* DT, 5 = g* T2 — ¢'T)—>. (3.53b)

Therefore(¢*S,_1—¢'S,-1. ¢*Tp—2—4¢/ T,_) is the relative boundary of the relative chain
(c*Ds, 1, —c®DT,_5). Now, if k,! are large enougly’ S,_1, ¢" T, are bothO-small for

r > min(k, [). Sincec preserve®)-smallness and the range ©tontains only degenerate
chains (seesection 2.}, both c*95, 1 andc*)T,_, are O-small and degenerate, by
(3.52) Recall that degenerate chains are invisible, that is the integral of any form on any
such chain vanishes. So, recalli(@y15) and (3.10)

29S8, ¢ T .1 — 9°(¢'S. ¢'T; 2,1
=9S — ¢S, T — ¢'T; 2, 1) = 9 (bc*P S + i *O T, bckOT; 5 1)
= (c®Ds, 1, 8P) + (¢*DT, o, vPHy =0 modz. (3.54)

This shows that the right hand side(8f51)is independent from.
LetO(1), O(2) be two good coverings. L&(12) be a good covering refining both(1),
O(2) and letk be large enough so ther;kSp_l, q~ Tp—2) is O(12)-small. Then

OV (Grs, ¢ T, 5, 1) — 09D (¢hs, ¢ T 2,1 =0 (3.55)

by (3.50) provided theH)5y Yx, v /Hé’F;Zl(X, Y) parametrizations of®®, 0@ are
suitably chosen. This shows that the right hand sid@df1)is independent frond.
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We have thus managed to define a map@ngzg_l(x, Y) — R/Z. ltis easy to show
that® is Z linear. For giverZ linear combinations of relative cycles, one chooses a good
coveringO and a subdivision degrdelarge enough so that all the relative cycles involved
areO-small. Then, thé linearity of @ follows trivially from that of ©.

When the relative (co)cycles,_1, T,—_2), (27, TP~1) are shifted by the relative (co)bo-
undaries given by the right hand sideg®21a), (2.21b), (2.33a) and (2.33gspectively,
one has

ADS, T; B, 1) = (Sp-1, ") = (Tp2, 0" 72) + (5, BP) = (1p-1, TP7H)
+(sp, dEPTY) — (1)1, i*EPL — duP72)  modZ. (3.56)

Indeed, provided is large enough to make all chains involv@dsmall, A®(S, T; &, 7)
= AD9(¢*S, ¢*T; B, 1), which, on account of3.10), is given by
APO(G"S 4" T; B, 1) = (q"Sp-1, 6771 = (¢" Tp2, v"72) + ("5, E7)
—(q"1p-1. Y77 + (g5, dEPT)
—(¢*tp_1, *EP7L — dvP~2)  modZ. (3.57)

Using(2.20a), (2.20b) and (3.529ne has

bk 08, 1 +isc®OT, 5 = ¢*S, 1 — -1, (3.58a)
bck-0 Ty 2=qTy 2— Ty 2, (3.58b)
bk O, 4 - Obs, — gks s (3.58¢)
bc(k’o)t,,_l + c*0 bt, 1 = qktp_l —1p1. (3.58d)

As the range of contains only degenerate chaité;9 s, _1, c*9 T, 5, ¢*Og, (*Of,
are all degenerate, hence invisible. Then(Byp8a)—(3.58d)the chain97kS,,_1 - Sp-1,
¢ Tp—2 — Tp—2, ¢*sp — s, ¢*t,—1 — t,—1 are all invisible. It follows that the right hand
side of(3.57)equals that 0f3.56)

If we change the’{é’gl(x, Y)/Hé’gzl(x, Y) parametrizationg (S, T; &, T) varies of an
amount given by

AD(S. T; 8, 7) = —[(Sp-1. [T"7) — (T2, £P"%)] modZ (3.59)

for some relative de Rham cocydl&?~1, ¥7~2) defined up to cohomologically integer
relative de Rham cocycles. Indeed, providésiso large that all chains involved afesmall,
AD(S, T; 8,1 = APO(¢*S, ¢*T; &, 1), so that, by(3.12)

ADO (S, ¢ T; B, 1) = —[(g*Sp—1. TP7Y) — (¢* T)—2, ZP7%)] modZ.  (3.60)

By (3.58a)—(3.58d)the chainsqkS,,_l —Sp-1, qkTp_z — T,_p, are all invisible. It follows
that the right hand side ¢8.59)equals that of3.60)
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3.4. The end product: the fami@Sﬁ’(’Y of relative Cheeger—Simons differential characters

We have thus defined a family @f linear mapping® : Z;_l(X, Y) - R/Z param-
eterized by a relative integer singular cohomology class}lfg(x, Y), a representative
(87,1771 € ZI, (X, V) of the image of such class ], (X, Y) and a point in the rel-
ative de Rham cohomology torlﬁﬁgl(X, n/Hé’ngl(X, Y). We claim that this is precisely
the family of degree Y relative Cheeger—Simons differential characterXﬂiSf(,y. This
will become clear in the next section. See also the heuristic discussion giSention Ifor
comparison. Itisimportant to recall that the above construction works provided the family of
good open coverings &, Y is cofinal in the family of open coverings &f(cf. Sections 2.4
and 3.2.

4. Formal properties of the relative Cheeger—Simons differential characters

In this section, we shall define the relative Cheeger—Simons differential characters in
abstract terms and study their main formal properties. This will lead us to identify the
family CS% x.y Of these characters with the family of characters construct&eation 3

Let p, XY satisfy the same assumptions as#rction 2.2

4.1. Basic properties of the relative Cheeger—Simons characters

By definition,® < CS@’(’Y if @: Z;_l(X, Y) — R/Zis aZ linear mapping and there is
arelative de Rhamp-cochain(E?, 7P~1) Cé’R(X, Y) such that

d(bs— iut, —bt) = (s, EF) — (tp—1, Y"~1) modZ (3.61)

for all relative singular chaing, t,-1) € C3(X, Y). CS% v is clearly a group.

Let® € CS‘;’( v If Gsp,tp—1) € Zs (X, Y) is a relative singulap-cycle, thend(bs —
it, —bt) =0, by(2 20a) and (2. ZOt()Mth p replaced byp + 1). From(3.61) we thus get
the quantization condition

(sp, BP) = (ty_1, Y"1y € Z. (3.62)

Further, if (sp, t,—1) € Bf,(X, Y) is the boundary of a relative singular + 1-chain
(up+1, vp), ONe has fron{3.62)

(Ups1,dEP) — (v, i*EP —dYP Yy e Z (3.63)

by (2.21a) and (2.21bwith p replaced byp + 1) and(2.16) and (2.17)By (3.63), since
(upt1, vp) is arbitrary,(27, TP~1) must satisfy(2.32a) and (2.32kAnd is thus a relative
de Rham cocycle. Froif8.62), (27, T7~1) is cohomologically integer. Therefore, for any
D €CSyy, (BP, Y77 Y e ZI, (X, V).

Toany® e CSf(’y there is associated a well-defined relative integer singular cohomology
class inH;'i(X, Y) such that(E7, TP~1) is a representative of the image of such class in
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Hé’RZ(X, Y). Indeed, aR/Z is a divisible group andff,_l(X, Y) is a subgroup of the free
group C;l(x, Y), there is aZ linear mapping® : C;l(x, Y) — R such that® =
5>|Z;_1(X, Y) modZ. Then, by(3.61)

AP(sp) — TP Yt,-1) = (S — ist, —bt) — (s, EP) + (tp—1, TP71) (3.64)

with (s, tp—1) € Cf,(X, Y), defines a relative integer singular cochait?, '’?~1), which
is readily checked to be a cocycle cohomologically equivaleqEta 77~1). The choice of
@ affects(A?, I'P~1) at most by a relative integer singular coboundary. Hence, the integer
singular cohomology class ¢fA”?, I'?~1) is unambiguously determined Ig.
Let (ITP~1, xP=2) ¢ Cé’gl(X, Y) be arelative de Rham — 1-cochain. Then

&S, T) = (Sp_1, TP7Yy — (T,_2, ZP~2) modZ (3.65)

for (Sp—1,Tp—2) € Z;_l(X, Y), defines a charactep < CSf(’Y. @ depends only on
the equivalence class ¢f77~1, ¥7=2) modulo the cohomologically integer relative de
Rhamp — 1-cocycles ofzg;Zl(x, Y). The class OH&(X, Y) corresponding t@ vanishes.
The relative de Rham cocycleg?, T7-1) of @ is the relative de Rham coboundary of
(I1P~1, £P=2) (cf. Eq. (2.33a) and (2.33pand(&”, TP~1) vanishes in the important case
when(117-1, £7-2) € Zh- (X, V).

4.2. The first relative Cheeger—Simons exact sequence

From the above discussion, it follows that there is an exact sequence of the form
-1

Hyg (X, Y)
1

Hyps (X, Y)

where A/ (X, Y) is the subset of the Cartesian prodi£f, (X, ¥) x Z, (X, Y) formed
by the pairs of a relative integer singular cohomology clasH@(X, Y) and a represen-
tative of the image of such class H[ﬁ’RZ(X, Y). The relative de Rham cohomology torus
Hé”gl(x, Y)/Hé’gzl(x, Y) appears here. It parameterizes the group obadl CSY , char-
acterized by the same pair of dataAlg(X, Y). The sequencEs.66)in the absolute case
was found in Ref[32].

We note that theZ linear mappingsd : Zi_l(X, Y) — R/Z constructed irSection 3
all belong toCSf(’y as they satisfy(3.61) on account 0f3.56) Each such® is charac-
terized by a relative integer singular cohnomology clasH@(X, Y) and a representative
(&7, 771 e ZL, (X, V) of the image of such class i}, (X, Y). As is easy to see,
these relative data are precisely the ones defined abstra@lgcition 4.1above. Indeed,
(3.64)is the statement in the language of singular cohomology that the sequence of cochains
(8P, vP~ 1. @; AP, rP~1) is a differential cocycles (cSection 2.3and the discussion of
Section 3.). The set of theb compatible with a fixed choice of the relative data is param-
eterized byHé’,;l(X, Y)/Hé’gzl(x, Y). This justifies our claim that the family & linear
mappings® of Section 3s preciselwsf(’y.

0— — CSy y = AL(X.Y) =0, (3.66)
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4.3. The second relative Cheeger—Simons exact sequence
From the above discussion, there is another exact sequence of the form

Chl(x.v)

0— 7
Zhg X, 1)

— CS8% y — HG (X, V) — 0, (3.67)

which is directly related to the first one. This sequence indicates that the group of all the
character e CSY , characterized by the same cohomology claggin(X, Y) is isomor-

phic tngle(X, Y)/Zé’F;Zl(X, Y). In the absolute case, the sequence was found if Rif.
Its importance stems from the fact that it reveals the relation between the Cheeger—Simons
differential characters and the smooth Beilinson—-Deligne cohomdglidtyyl 4]

The analysis oBection Jurnishes an expression of the dependence of the Cheeger—Simons
character® € CS‘;Y onthe cohomologically integer relative de Rham cocygle, Y7~ 1) e
Zles (X, Y) forafixed class iz, (X, Y). Indeed, from(3.56) if we shift (57, Y7~1) by a
relative de Rham coboundary of the forf2.33a) and (2.33b)® varies of an
amount:

AD(S, T) = (Sp-1. &) = (Tp_2.0"7?) (3.68)

for (Sp—1, Tp—2) € Z;_l(X, Y).

5. Concluding remarks

In this paper, we have shown that the proper treatment of the topological integrals ap-
pearing in many physical models such as gauge theory and string theory requires in an
essential way relative (co)homology and leads to relative Cheeger—Simons differential
characters. Instead of contenting ourselves with an abstract study of these matters, we
have worked out a definition of relative Cheeger—Simons differential characters which
is constructive, i.e. computable in principle, and which contains the ordinary Cheeger—
Simons differential characters as a particular case. The resulting expressions are totally
explicit and completely general and lend themselves also to a more formal type of
study.

Our method relies heavily odech (co)homological machinery. This has its advantages
and disadvantages. At any rate, it seems hardly avoidable when one has to deal with locally
defined fields on arbitrary topologically non-trivial manifolds. A major part of the effort
consisted in showing independence from covering choices.

We limited ourselves to the case where the quantization conditions can be formulated in
the framework of integral relative cohomology. This excludes interesting examples from
D-brane theory, which require more general cohomology theories sudhtheory. It
would be very interesting to generalize our constructioré-tteory. This is left for future
work.
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Appendix A. Existence and cofinality of good open coverings

Let M be a manifold equipped with a Riemannian metri¢orm € M andu € T, M,
we setlulmg = gm(u, u)/%. Forr > 0, we defineBwg(m, r) = {ulu € T,,M, |ulpg < r}.
The exponential exg, is a map of an open neighborhodig of the 0 section oTM into
M. It has the basic property that, far € M andu € T,,, M, the curveymy(t) = eXpyg(tu),
0 <1, tu € Nuyg, is the unique geodesic with initial conditigm, u) [40].

The following theorem holdpt0]. Form e M, there isrmg(m) > 0 such that, for any
r with 0 < r < rmg(m), Bmg(m, r) € Nmg and there is an open neighborhaGgg(m, r)
of m in M such that eXflg : Bmg(m,r) — Uwmg(m, 1) is a diffeomorphism. Further,
Uwmg(m, r) is geodesically convex, that is every two poipts; € Ung(m, r) can be joined
by a unique distance minimizing geodesic containetlyg(m, r). Form € M, the family
Ung(m) = {Umg(m, r)|0 < r < rmg(m)} is a fundamental system of geodesically convex
open neighborhoods ef. Since the intersection of any finite number of geodesically convex
open sets is geodesically convex, the open coveldhgé M made of setd/yg(m, r) with
varyingm and sufficiently smalt are good. Further, such good coverings are cofinal in the
family of all open coverings (cfSection 2.}

Let X be a manifold equipped with a Riemannian megriand letY be a submanifold
of X with induced metrié*g. Assume that is totally geodesi¢40]. Then, every geodesic
of ¥ with respect to the metric'g is a geodesic ok with respect tag, so that exp;., =
eXpPxgl Nyirg N Nxg. It follows that fory € ¥ € X and 0 < r < rvicg(y), Uyirg(y,7) =
Uxg(y, ) N'Y. Now, defineu;(g(x) = {Uxg(x, N0 < r < rxg(x), Uxg(x, ) NY = @}, for
x € X\ Y,L{g(g(y) = {Uxg(y, N0 < r < ryirg(y)}, fory € Y. Then, for any € X,Z/{S(g(x)
is a fundamental system of geodesically convex open neighborhoadsioh that, for any
yevy, L{;(g(y) NY = Uvirg(y). From the discussion of the previous paragraph, it follows
that the open covering8 of X made of set#/xq(x, ) with varyingx and sufficiently small
r are good for the paiX, Y (cf. Section 2.3and that such good coverings are cofinal in the
family of all open coverings.

Therefore, given a manifol® and a submanifold of X, in order a cofinal family of
good open coverings df, Y to exist, it is sufficient that there is a Riemannian megram
X with respect to whiclY is totally geodesic.
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