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Abstract

Topological integrals appear frequently in Lagrangian field theories. On manifolds without
boundary, they can be treated in the framework of (absolute) (co)homology using the formalism of
Cheeger–Simons differential characters. String andD-brane theory involve field theoretic models
on worldvolumes with boundary. On manifolds with boundary, the proper treatment of topological
integrals requires a generalization of the usual differential topological set up and leads naturally
to relative (co)homology and relative Cheeger–Simons differential characters. In this paper, we
present a construction of relative Cheeger–Simons differential characters which is computable in
principle and which contains the ordinary Cheeger–Simons differential characters as a particular
case.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Topological integrals appear frequently in Lagrangian field theories such as Chern–Simons
model, Wess–Zumino–Witten model, gauge theory andD-brane theory, to mention only
the most popular and best known. They are formal integrals on topologically non-trivial
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manifolds of differential forms which are only locally defined. The integrand thus suffers
ambiguities on overlapping coordinate patches, making the definition of integration prob-
lematic. In physics, the problem of the proper definition of topological integrals has been
studied by several authors since the mid eighties[1–3] and also recently it has been the
object of a number of studies[4–8]. In mathematics, the interest in this topic dates back
at least to the early seventies when it was attempted to frame the Chern–Simons forms
associated to connections on a principal bundle in appropriate global differential topolog-
ical structures on its base space. It resulted in the theory of Cheeger–Simons differential
characters[9–11]whose apparent relation with the smooth versions of Deligne cohomology
[12] and Deligne–Beilinson cohomology[13,14] developed a decade later was noticed in
the early ninenties and has been reconsidered recently[15].

Virtually all the above studies deal with absolute cohomology and differential characters.
A generalization of the formalism appropriate for relative cohomology and differential
characters has not been fully worked out to the best of our knowledge. This is attempted in
the present paper.

The reason why this is an interesting problem and not a mere academic exercise is shown
by the physical examples illustrated below in which the relevance of relative cohomology
and differential characters should be apparent. Since we have physical applications in mind,
we want to provide a constructive treatment, i.e. one computable at least in principle. For
this reason, we opt for a formulation closer in spirit to Cheeger’s and Simons’, which is
somewhat more concrete and thus more suitable for the physicists’ computational needs.
We shall do this using the machinery ofČech (co)homology as in[1–3]. We shall not use
partitions of unity as in[8], since these are required by distribution valued quantized fields,
while the fields relevant in our examples are background semiclassical fields. Though we
work mostly in the framework of relative integer cohomology, our formulation presumably
might be extended to more general relative cohomology theories, in particularK-theory.

Consider a space–timeX and aD-brane occupying a submanifoldY ⊆ X in type II
string theory. The background is characterized by the NS NS fieldB2. Further, theD-brane
carries aU(1) gauge fieldA1. For a string with world sheetΣ2 ⊆ X such that∂Σ2 ⊆ Y ,
the path integral measure contains a factor

pfaff(DΣ) exp

(
i
∫

Σ2

B2 − i
∫

∂Σ2

A1

)
, (1.1)

whereDΣ is the Dirac operator onΣ2 and pfaff(DΣ) its pfaffian[16]. If ∂Σ2 = ∅, the sign
of pfaff(DΣ) is uniquely defined. In order for the path integral measure to be well defined
H3 = dB2 is required to be a globally defined closed 3-form with quantized fluxes through
any closed 3-foldsP3 ⊆ X:∫

P3

H3 ∈ 2πZ. (1.2)

If ∂Σ2 �= ∅, the sign of pfaff(DΣ) is not uniquely defined in general, signaling a global
world-sheet anomaly. Consistency requires that this anomaly be canceled by an equal and
opposite anomaly of the exponential factor of(1.1). In order for this to be possible, the
2-form BA2 = B2 − dA1 must be globally defined onY so that the restriction ofH3 on Y



R. Zucchini / Journal of Geometry and Physics 46 (2003) 355–393 357

is exact. The quantization condition(1.2)gets generalized as∫
P3

H3 −
∫

Q2

BA2 − π

∫
Q2

w2 ∈ 2πZ (1.3)

for P3 ⊆ X, Q2 ⊆ Y with ∂P3 = Q2, wherew2 is a closed 2-form onY representing the
second Stiefel–Whitney class ofY modulo 2. In the simple case whereB2 = 0,Y turns out
to be a Spinc manifold andA1 a Spinc connection. See[16] for more details and[17] for a
related analysis.

The problem ofD-branes in group manifolds has received a great deal of attention recently
[18–23]. The central issue here is the proper definition ofD0 charge and its quantization.
Consider aD-brane located in a submanifoldK of a compact simple Lie groupG. The
background is characterized by a closed 3-formH3 on G, the trace of the third wedge
power of the left invariant Maurer–Cartan form ofG. According to[24], theD0 chargeQ
of a D2-brane contained in theD-brane is defined ifH3 = dL2 on K for some 2-formL2
globally defined onK and is given by

Q =
∫

V3

H3 −
∫

Z2

L2 (1.4)

for V3 ⊆ G, Z2 ⊆ K with ∂V3 = Z2. WhenH3 is cohomologically trivial,Q is quantized
asQ ∈ 2πZ in the usual way. WhenH3 has a fundamental period (level)k, Q is quantized
asQ ∈ 2πZk. These quantization rules have to be compared with(1.3).

ConsiderN coincidingD-branes of type II string theory spanning a world-volumeW in
the space–timeX. The background fields are the spin connectionω1, the NS NS B-fieldB2
and the R R fieldC. Further, the set of branes carries aU(N) Chan–Paton gauge fieldA1
[25]. Here, we assume thatB2 = 0. C is an odd/even degree form field for type IIA/IIB
strings.C is not globally defined inX in general. Only its field strengthG = dC is. The
D-brane is carries R R charges and thus couples to the R R fieldC via the Wess–Zumino
term. Thus, the path integral contains a factor of the form

pfaff(DW)exp

(
i
∫

W

tr exp∧
(

iF2

2π

)
∧ Â1/2(RTW2) ∧ Â−1/2(RNW2) ∧ C

)
, (1.5)

where pfaff(DW) is the pfaffian of the Dirac operator onW andRTW2, RNW2 andF2 the
curvatures of the tangent and normal bundles TW, NW ofW and the gauge field strength,
respectively.Â denotes the A-roof genus. This factor is required and explicitly determined
by gauge and gravitational anomaly cancellation[26–28]. As before, the sign of pfaff(DW)

suffers in general an ambiguity which signals a global anomaly. The proper definition of the
path integral measure requires some kind of quantization condition for the R R curvature
G. This reads∫

U

Â1/2(RTU2) ∧ Â−1/2(RNU2) ∧ G − π

∫
U

ν ∈ 2πZ (1.6)

for any closed submanifoldU of X of dimension one unit larger thanW , whereRTU2, RNU2
are the curvatures of the tangent and normal bundles TU, NU ofU, respectively, andν a
closed form representing the pfaffian anomaly modulo 2. In the last 3 years it has become
clear that a realistic theory ofD-brane R R charges and R R fields in type II string theory
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requiresK-theory whenB2 = 0 and some sort of twisted generalization thereof when
B2 �= 0 [28–32]. In any case, a form of generalized cohomology is involved which maps to
a full lattice in ordinary real cohomology as is apparent from(1.6).

A generalization for open membranes is still to be worked out[33]. It presumably involves
adding in the exponential in the right hand side of(1.5)a suitable integral onZ = ∂Y leading
to a structure similar to(1.1). This is however just a speculation for the time being.

The above examples show clearly that the geometrical framework suitable for the analysis
of these matters is provided by relative singular homology and (some generalization of)
integral cohomology. To make this clearer and also to render the rest of the paper more easily
readable, we recall briefly some of the basic definitions (see Refs.[34–39]for background
material).

Let X, Y be smooth manifolds withY ⊆ X. Denote byi : Y → X the smooth inclusion
map. A relative singularp − 1-cycle(Sp−1, Tp−2) of X mod Y is a pair of singular chains
of X, Y , respectively, satisfying

∂Sp−1 − i∗Tp−2 = 0, −∂Tp−2 = 0. (1.7)

A relative de Rhamp-cocycle(Ξp, Υp−1) of X mod Y is a pair of forms ofX, Y , respec-
tively, satisfying

dΞp = 0, i∗Ξp − dΥp−1 = 0. (1.8)

Locally, there are forms̃Ξp−1, Υ̃p−2 in X, Y , respectively, such that

Ξp = dΞ̃p−1, Υp−1 = i∗Ξ̃p−1 − dΥ̃p−2. (1.9)

The associated relative topological integral is the formal integral∫
Sp−1

Ξ̃p−1 −
∫

Tp−2

Υ̃p−2. (1.10)

In general, its value is determined only up to a quantized ambiguity. In the simplest case,
the ambiguity is just integer valued.1 This translates into a quantization condition for the
relative de Rhamp-cocycle(Ξp, Υp−1) of the form∫

sp

Ξp −
∫

tp−1

Υp−1 ∈ Z (1.11)

for any relative singularp-cycle (sp, tp−1). For more general quantized ambiguities, we
have totally analogous generalized quantization conditions.

In the first example illustrated above,(Σ2, ∂Σ2) is a relative singular 2-cycle and(H3, BA2)

is a relative 3-cocycle. The argument of the exponential in(1.1)is the associated topological
integral. The quantization condition(1.3)holds for every relative singular 3-cycle(P3, Q2).
Similarly, in the second example,(V3, Z2) is a relative singular 3-cycle,(H3, L2) is a rel-
ative 3-cocycle andQ expresses the canonical pairing of relative singular 3 homology
and relative de Rham 3 cohomology. Quantization selects a sublattice of the latter. Similar
considerations might apply to an open membrane generalization of the third example.

1 Here and in the following, we neglect an inessential factor 2π appearing in the physical quantization conditions.
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SinceΞ̃p−1, Υ̃p−2 are only local forms in general, the proper definition of the topological
integral(1.10) is not a straightforward matter. However, any reasonable definition should
satisfy the following a priori requirements up to the usual quantized ambiguity. To begin
with, we expect the topological integral to depend linearly on the relative cycle(Sp−1, Tp−2)

and the relative cocycle(Ξp, Υp−1). Further, we expect some kind of Stokes’ theorem to
hold. So, when the relative singularp − 1-cycle(Sp−1, Tp−2) is a relative boundary

Sp−1 = ∂sp − i∗tp−1, Tp−2 = −∂tp−1 (1.12)

for some singular chainssp, tp−1 in X, Y , respectively, then∫
Sp−1

Ξ̃p−1 −
∫

Tp−2

Υ̃p−2 =
∫

sp

Ξp −
∫

tp−1

Υp−1, (1.13)

where the integrals in the right hand side are computed according to the ordinary differential
geometric prescription. Finally, we would like the topological integral to reduce to an
ordinary integral when the forms̃Ξp−1, Υ̃p−2 are globally defined inX, Y , respectively.
So, when the relative de Rhamp-cocycle(Ξp, Υp−1) is a relative coboundary

Ξp = dξp−1, Υp−1 = i∗ξp−1 − dυp−2 (1.14)

for some globally defined formsξp−1, υp−2 onX, Y , respectively, then∫
Sp−1

Ξ̃p−1 −
∫

Tp−2

Υ̃p−2 =
∫

Sp−1

ξp−1 −
∫

Tp−2

υp−2, (1.15)

where again the integrals in the right hand side are computed according to the ordinary
differential geometric prescription.

The plan of the paper is as follows. InSection 2, we introduce the basic notions of relative
homology and cohomology. InSection 3, we provide an explicit construction of the family
of relative Cheeger–Simons differential characters and show independence form covering
choices. InSection 4, we analyze in detail its formal properties. Finally,Section 5contains
a few concluding remarks.

2. Relative singular, de Rham and Čech (co)homology

This is a review of some basic material on relative singular, de Rham andČech (co)homo-
logy. The reader interested in a more thorough treatment is suggested to consult standard
textbooks such as[34–36].

2.1. Basic definitions and facts

Let M be a smooth manifold. LetO = {Oα|α ∈ A} be an open covering ofM. Here,A
is a countable index set. We set, fork ≥ 0:

Oα0,... ,αk
= Oα0 ∩ · · · ∩ Oαk

. (2.1)
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Thekth nerve ofO is

N(O, k) = {(α0, . . . , αk) ∈ Ak+1|Oα0,... ,αk
�= ∅}. (2.2)

O is a good covering if all the non-emptyOα0,... ,αk
are contractible.

For r ∈ Z, we denote bySr(M) the group of (generalized) dimensionr singular chains
of M: Sr(M) = 0, for r ≤ −2, S−1(M) = Z andSr(M) is the group of ordinary smooth,
finite singular chains ofM of dimensionr, for 0 ≤ r. A dimensionr singular chainUr is
characterized by its support suppUr ⊆ M. By convention, suppUr = ∅ for r ≤ −1. For
any non-empty open subsetO of M, we denote bySO

r (M) the group of all dimensionr
chainsUr such that suppUr ⊆ O. Clearly,SO

r (M) is a subgroup ofSr(M).
We define a homomorphismb : Sr(M) → Sr−1(M) by

bUr = ∂sUr. (2.3)

Here, for 1≤ r, ∂s is the customary simplicial boundary operator, while forr = 0, ∂sU0 =
indU0, where ind

∑
P nPP = ∑

P nP for a dimension 0 chain
∑

P nPP .2 b is nilpotent:

b2 = 0. (2.4)

LetObe an open covering ofM. Forr ∈ Z, we denote bySOr (M) the subgroup ofO-small
elements ofSr(M): SOr (M) = Sr(M), for r ≤ 0, andSOr (M) is the subgroup ofSr(M)

formed by the singular chains made up of simplices the support of each of which is contained
in some open set ofO, for 1 ≤ r. There exists a homomorphismq : Sr(M) → Sr(M),
called barycentric subdivision operator, with the following properties.q is a chain map:

qb− bq = 0. (2.5)

q is homotopic to the identity, i.e. there is a homomorphismc : Sr(M) → Sr+1(M) such
that

bc+ cb = q − 1. (2.6)

Most importantly, for anyUr ∈ Sr(M) there is an integerk(Ur,O) ≥ 0 such thatqkUr ∈
SOr (M) for k ≥ k(Ur,O). q andc preserveO-smallness: for anyUr ∈ SOr (M), qUr ∈
SOr (M) andcUr ∈ SOr+1(M). Further, for anyUr ∈ Sr(M), cUr is degenerate, i.e. it is made
up of simplices each of which, considered as a smooth map of the standardr + 1 simplex
into M, has rank smaller thanr + 1. An explicit construction ofq andc can be found in
[36].

LetO = {Oα|α ∈ A} be an open covering ofM. Fork, r ∈ Z, we denote byCk,r(M,O)

the group of finiteČech singular chains ofO in M of Čech degreek and dimensionr:
Ck,r(M,O) = 0, for k ≤ −2, C−1,r(M,O) = SOr (M) andCk,r(M,O) is the group of
alternating mapsUk,r : Ak+1 → SOr (M) such that(Uk,r)α0,... ,αk

= 0 for (α0, . . . , αk) /∈
N(O, k), (Uk,r)α0,... ,αk

∈ SOα0,... ,αk
r (M) for (α0, . . . , αk) ∈ N(O, k) and(Uk,r)α0,... ,αk

�= 0
only for a finite number of(α0, . . . , αk), for 0 ≤ k. Note that thěCech singular chains are

2 In dimension 0, the definition of the boundary operatorb given here differs from the customary one of singular
homology, whereb vanishes. As a consequence, the zero-dimensional homology groups corresponding to the two
definitions ofb are also different. Our definition ensures that the statement above(2.7)holds.



R. Zucchini / Journal of Geometry and Physics 46 (2003) 355–393 361

automaticallyO-small. TheČech singular chains ofC−1,r(M,O) are called simply singular
chains, on account of the definition given above. TheČech singular chains ofCk,−1(M,O)

are called integeřCech chains, since they are integer valued.
The operatorb yields a homomorphismb : Ck,r(M,O) → Ck,r−1(M,O) in obvious

fashion. It is known that the homology of(Ck,∗(M,O), b) vanishes fork > −1, if O is a
good covering.

We define a homomorphismβ : Ck,r(M,O) → Ck−1,r(M,O) by

(βUk,r)α0,... ,αk−1 =
∑
α∈A

(Uk,r)α,α0,... ,αk−1. (2.7)

β is a differential:

β2 = 0. (2.8)

The homology of(C∗,r(M,O), β) is known to vanish forr > −1 for any coveringO.
b andβ commute

bβ − βb = 0. (2.9)

For r ∈ Z, we denote byDr(M) the vector space of (generalized) degreer differential
forms of M: Dr(M) = 0, for r ≤ −2, D−1(M) = R andDr(M) is the vector space of
ordinary smooth differential forms ofM of de Rham degreer, for 0 ≤ r. More generally,
one may consider degreer differential formsΞr which are defined only on a domain
domΞr ⊆ M. By convention, domΞr = M for r ≤ −1. For any non-empty open subsetO

of M, we denote byDr
O(M) the vector space of all degreer formsΞr such that domΞr ⊇ O.

Clearly,Dr(M) is a subspace ofDr
O(M).

We define a homomorphismd : Dr(M) → Dr+1(M) by

dΞr = ddRΞr. (2.10)

Here, for 0≤ r, ddR is the usual de Rham differential while, forr = −1, ddRΞ−1 is the
constant 0-form corresponding to the constantΞ−1.3 d is a differential:

d2 = 0. (2.11)

LetO = {Oα|α ∈ A} be an open covering ofM. Fork, r ∈ Z, we denote byCk,r(M,O) the
vector space of̌Cech–de Rham cochains ofO in M of Čech degreek and de Rham degree
r: Ck,r(M,O) = 0, for k ≤ −2, C−1,r(M,O) is the vector space of formsΞr ∈ Dr(M)

andCk,r(M,O) is the vector space of alternating mapsΞk,r : Ak+1 → Dr(M) such that
(Ξk,r)α0,... ,αk

= 0 for (α0, . . . , αk) /∈ N(O, k) and (Ξk,r)α0,... ,αk
∈ Dr

Oα0,... ,αk
(M) for

(α0, . . . , αk) ∈ N(O, k), for 0 ≤ k. The Čech–de Rham cochains ofC−1,r(M,O) are
called simply de Rham cochains, on account of the definition given above. TheČech–de
Rham cochains ofCk,−1(M,O) are called reaľCech cochains, since they are real valued.

The operator d yields a homomorphism d :Ck,r(M,O) → Ck,r+1(M,O). By Poincaré’s
lemma, the cohomology of(Ck,∗(M,O), d) vanishes fork > −1, if O is a good covering.

3 The definition given here of coboundary operator d in degree−1 is a rather natural extension of the usual de
Rham differential which allows the treatment of degree−1 on the same footing as non-negative degree. It further
ensures that the statement above(2.12)holds.
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We define a homomorphismδ : Ck,r(M,O) → Ck+1,r(M,O) by

(δΞk,r)α0,... ,αk+1 =
k+1∑
l=0

(−1)l(Ξk,r)α0,... ,αl−1,αl+1,... ,αk+1|Oα0,... ,αk+1
. (2.12)

δ is nilpotent:

δ2 = 0. (2.13)

The cohomology of(C∗,r(M,O), δ) is known to vanish forr > −1 for any coveringO.
d andδ commute

dδ − δd = 0. (2.14)

A degreek realČech cochainΞk,−1 ∈ Ck,−1(M,O) is called integer if(Ξk,−1)α0,... ,αk
∈ Z

for all (α0, . . . , αk) ∈ Ak+1. Such integer cochains form a lattice subgroupCk,−1
Z

(M,O)

of Ck,−1(M,O).
Let Uk,r ∈ Ck,r(M,O), Ξk,r ∈ Ck,r(M,O). Fork ≥ 0, we set

〈Uk,r, Ξk,r〉 =




1

k!

∑
(α0,... ,αk)∈N(O,k)

∫
(Uk,r)α0,... ,αk

(Ξk,r)α0,... ,αk
if r ≥ 0,

1

k!

∑
(α0,... ,αk)∈N(O,k)

(Uk,−1)α0,... ,αk
(Ξk,−1)α0,... ,αk

if r = −1,

0 if r ≤ −2.

(2.15)

For k = −1, similar expressions hold but with the sum over thekth nerve of the covering
and the factor 1/k! omitted. The integrals in the right hand side are convergent, since all
singular chains have compact support. The sum in the right hand side is convergent, as all
Čech singular chains are finite by definition. One has

〈Uk,r, dΞk,r−1〉 = 〈bUk,r, Ξk,r−1〉, (2.16)

〈Uk,r, δΞk−1,r〉 = 〈βUk,r, Ξk−1,r〉. (2.17)

These duality relations play a fundamental role in the following.
LetO = {Oα|α ∈ A},O′ = {O′

α′ |α′ ∈ A′} be open coverings of the manifoldM.O′ is
called a refinement ofO if there is a mapf : A′ → A such thatO′

α′ ⊆ Of(α′) for α′ ∈ A′.
The refinement mapf defines a homomorphismf ∗ : Ck,r(M,O) → Ck,r(M,O′) of the
corresponding spaces ofČech–de Rham cochains by

f ∗Ξk,r
α′

0···α′
l
= Ξ

k,r
f(α′

0)···f(α′
l)
|O′

α′
0···α′

l
. (2.18)

f ∗ is a cochain map, i.e.:

f ∗δ = δ′f ∗. (2.19)

The resulting homomorphism of cohomology depends only on the coveringsO,O′ but not
on the refinement mapf .
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In the rest of this section, we shall describe briefly the main versions ofY relative
homology and cohomology ofX for a pair of manifoldsX, Y such thatY ⊆ X.

Let p ∈ N, p ≥ 2. LetX, Y be smooth manifolds with dimX ≥ p, dimY ≥ p − 1 and
such thatY ⊆ X. Let i : Y → X be the smooth inclusion map.

LetO be an open covering ofX and letO ∩ Y be the open covering ofY induced byO.

2.2. Relative homology and cohomology

A Y relative singularp − 1-chain(Sp−1, Tp−2) of X is a pair of singular chainsSp−1 ∈
Sp−1(X), Tp−2 ∈ Sp−2(Y). A Y relative singularp − 1-chain(Sp−1, Tp−2) of X is a cycle
if

bSp−1 − i∗Tp−2 = 0, (2.20a)

−bTp−2 = 0. (2.20b)

A Y relative singularp − 1-cycle(Sp−1, Tp−2) of X is a boundary if it is of the form

Sp−1 = bsp − i∗tp−1, (2.21a)

Tp−2 = −btp−1, (2.21b)

where(sp, tp−1) is an arbitraryY relative singularp-chain ofX. We denote byCs
p−1(X, Y),

Zs
p−1(X, Y), Bs

p−1(X, Y) the groups ofY relative singularp − 1-chains, cycles and bound-
aries ofX, respectively. Two relativep − 1-cycles are equivalent if their difference is a
relativep − 1-boundary. The equivalence classes ofY relative singularp − 1-cycles ofX
form thep − 1th relative singular homology groupHs

p−1(X, Y).
A Y relative singularp−1-chain (respectively, a cycle, a boundary)(Sp−1, Tp−2) is said

O-small if Sp−1 isO-small andTp−2 isO ∩ Y -small in the sense defined in the previous
subsection. We denote byCsO

p−1(X, Y), ZsO
p−1(X, Y), BsO

p−1(X, Y) the groups ofO-small
Y relative singularp − 1-chains, cycles and boundaries ofX, respectively. TwoO-small
relativep−1-cycles are equivalent if their difference is anO-small relativep−1-boundary.
The equivalence classes ofO-smallY relative singularp − 1-cycles ofX form thep − 1th
O-small relative singular homology groupHsO

p−1(X, Y).
An O-small Y relative singularp − 1-chain (Sp−1, Tp−2) can be viewed as a pair

of Čech singular chains(S−1,p−1, T−1,p−2) with S−1,p−1 ∈ C−1,p−1(X,O), T−1,p−2 ∈
C−1,p−2(Y,O ∩ Y). We shall use both notations interchangeably depending on context.

A Y relative integeřCechp − 1-chain(Sp−1,−1, Tp−2,−1) of X is a pair of integeřCech
chainsSp−1,−1 ∈ Cp−1,−1(X,O), Tp−2,−1 ∈ Cp−2,−1(Y,O∩ Y). A Y relative integeřCech
p − 1-chain(Sp−1,−1, Tp−2,−1) of X is a cycle if

βSp−1,−1 − i∗Tp−2,−1 = 0, (2.22a)

−βTp−2,−1 = 0. (2.22b)

A Y relative integeřCechp − 1-cycle(Sp−1,−1, Tp−2,−1) of X is a boundary if it is of the
form

Sp−1,−1 = βsp,−1 − i∗tp−1,−1, (2.23a)
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Tp−2,−1 = −βtp−1,−1, (2.23b)

where(sp,−1, tp−1,−1) is an arbitraryY relative integerČechp-chain ofX. We denote
by CC

p−1(X, Y,O), ZC
p−1(X, Y,O), BC

p−1(X, Y,O) the groups ofY relative integerČech
p − 1-chains, cycles and boundaries ofX, respectively. Two relativep − 1-cycles are
equivalent if their difference is a relativep − 1-boundary. The equivalence classes ofY

relative integeřCechp − 1-cycles ofX form thep − 1th relative integeřCech homology
groupHC

p−1(X, Y,O).

For r ∈ N, setIr = {0, 1, 2, . . . , r}. A Y relativeČech singularp − 1-intertwiner of
X is a sequence(S−1,p−1, T−1,p−2; {Vk,p−1−k|k ∈ Ip−1}, {Zk,p−2−k|k ∈ Ip−2}; Sp−1,−1,

Tp−2,−1) with S−1,p−1 ∈ C−1,p−1(X, O), T−1,p−2 ∈ C−1,p−2(Y,O ∩ Y), Vk,p−1−k ∈
Ck,p−1−k(X,O), Zk,p−2−k ∈ Ck,p−2−k(Y,O ∩ Y), Sp−1,−1 ∈ Cp−1,−1(X,O), Tp−2,−1 ∈
Cp−2,−1(Y,O ∩ Y) satisfying

S−1,p−1 = βV0,p−1, (2.24a)

T−1,p−2 = βZ0,p−2, (2.24b)

bVk,p−1−k = βVk+1,p−2−k + (−1)ki∗Zk,p−2−k, 0 ≤ k ≤ p − 2, (2.25a)

bZk,p−2−k = βZk+1,p−3−k, 0 ≤ k ≤ p − 3, (2.25b)

Sp−1,−1 = bVp−1,0, (2.26a)

Tp−2,−1 = −(−1)p−2bZp−2,0. (2.26b)

Note that(Sp−1, Tp−2) ∈ ZsO
p−1(X, Y) (cf. Eq. (2.20a) and (2.20b)) and(Sp−1,−1, Tp−2,−1)

∈ ZC
p−1(X, Y,O) (cf. Eq. (2.22a) and (2.22b)). A Y relative singulařCechp−1-intertwiner

(S−1,p−1, T−1,p−2; {Vk,p−1−k|k ∈ Ip−1}, {Zk,p−2−k|k ∈ Ip−2}; Sp−1,−1, Tp−2,−1) of X is
said trivial if

S−1,p−1 = bs−1,p − i∗t−1,p−1, (2.27a)

T−1,p−2 = −bt−1,p−1, (2.27b)

Vk,p−1−k = bvk,p−k + βvk+1,p−1−k + (−1)ki∗zk,p−1−k, 0 ≤ k ≤ p − 1, (2.28a)

Zk,p−2−k = bzk,p−1−k + βzk+1,p−2−k, 0 ≤ k ≤ p − 2, (2.28b)

Sp−1,−1 = βsp,−1 − i∗tp−1,−1, (2.29a)

Tp−2,−1 = −βtp−1,−1, (2.29b)

wheres−1,p ∈ C−1,p(X,O), t−1,p−1 ∈ C−1,p−1(Y,O ∩ Y), vk,p−k ∈ Ck,p−k(X,O), for
0 ≤ k ≤ p, zk,p−1−k ∈ Ck,p−1−k(Y,O ∩ Y), for 0 ≤ k ≤ p − 1, sp,−1 ∈ Cp,−1(X,O),
tp−1,−1 ∈ Cp−1,−1(Y,O ∩ Y) are such that

s−1,p = βv0,p, (2.30a)

t−1,p−1 = −βz0,p−1, (2.30b)
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sp,−1 = bvp,0, (2.31a)

tp−1,−1 = −(−1)p−1bzp−1,0. (2.31b)

We denote by ZICs
p−1(X, Y,O), BICs

p−1(X, Y,O) the groups ofY relativeČech singularp −
1-intertwiners and trivial intertwiners ofX, respectively. Two relativep−1-intertwiners are
equivalent if their difference is trivial. The equivalence classes ofY relativeČech singular
p− 1-intertwiners ofX form a group HICs

p−1(X, Y,O). The notion of intertwiner given here
is the generalization of that of ‘element’ of[39] suitable for relative homology.

A Y relative de Rhamp-cochain(Ξp, Υ p−1) of X is a pair of de Rham cochainsΞp ∈
Dp(X), Υ p−1 ∈ Dp−1(Y). A Y relative de Rhamp-cochain(Ξp, Υ p−1) of X is a cocycle
if

dΞp = 0, (2.32a)

i∗Ξp − dΥ p−1 = 0. (2.32b)

A Y relative de Rhamp-cocycle(Ξp, Υ p−1) of X is a coboundary if it is of the form

Ξp = dξp−1, (2.33a)

Υ p−1 = i∗ξp−1 − dυp−2, (2.33b)

where(ξp−1, υp−2) is an arbitraryY relative de Rhamp − 1-cochain ofX. We denote
by C

p

dR(X, Y), Z
p

dR(X, Y), B
p

dR(X, Y) the vector spaces ofY relative de Rhamp-cochains,
cocycles and coboundaries ofX, respectively. Two relativep-cocycles are equivalent if their
difference is ap-coboundary. The equivalence classes ofY relative de Rhamp-cocycles of
X span thepth relative de Rham cohomology spaceH

p

dR(X, Y).
A Y relative de Rhamp−1-cochain(Ξp, Υ p−1) can be viewed as a pair ofČech–de Rham

cochains(Ξ−1,p, Υ−1,p−1) with Ξ−1,p ∈ C−1,p(X,O), Υ−1,p−1 ∈ C−1,p−1(Y,O∩Y). We
shall use both notations interchangeably depending on context.

A Y relative realČechp-cochain(Ξp,−1, Υ p−1,−1) of X is a pair of reaľCech cochains
Ξp,−1 ∈ Cp,−1(X,O), Υ p−1,−1 ∈ Cp−1,−1(Y,O ∩ Y). A Y relative realČechp-cochain
(Ξp,−1, Υ p−1,−1) of X is a cocycle if

δΞp,−1 = 0, (2.34a)

i∗Ξp,−1 − δΥ p−1,−1 = 0. (2.34b)

A Y relative realČechp-cocycle(Ξp,−1, Υ p−1,−1) of X is a coboundary if it is of the form

Ξp,−1 = δξp−1,−1, (2.35a)

Υ p−1,−1 = i∗ξp−1,−1 − δυp−2,−1, (2.35b)

where(ξp−1,−1, υp−2,−1) is an arbitraryY relative realČechp − 1-cochain ofX. We
denote byCp

C(X, Y,O), Z
p

C(X, Y,O), B
p

C(X, Y,O) the vector spaces ofY relative realČech
p-cochains, cocycles and coboundaries ofX, respectively. Two relativep-cocycles are
equivalent if their difference is ap-coboundary. The equivalence classes ofY relative real
Čechp-cocycles ofX form thepth relative realČech cohomology spaceHp

C(X, Y,O).
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Forr ∈ N, setIr = {0, 1, 2, . . . , r}. A Y relativeČech–de Rhamp-cointertwiner ofX is a
sequence(Ξ−1,p, Υ−1,p−1; {Ωk,p−1−k|k ∈ Ip−1}, {Θk,p−2−k|k ∈ Ip−2}; Ξp,−1, Υ p−1,−1),
whereΞ−1,p ∈ C−1,p(X,O), Υ−1,p−1 ∈ C−1,p−1(Y,O∩Y), Ωk,p−1−k ∈ Ck,p−1−k(X,O),
Θk,p−2−k ∈ Ck,p−2−k(Y,O ∩ Y), Ξp,−1 ∈ Cp,−1(X,O), Υ p−1,−1 ∈ Cp−1,−1(Y,O ∩ Y)

satisfy

δΞ−1,p = dΩ0,p−1, (2.36a)

δΥ−1,p−1 = −dΘ0,p−2 + i∗Ω0,p−1, (2.36b)

dΩk,p−1−k = δΩk−1,p−k, 1 ≤ k ≤ p − 1, (2.37a)

dΘk,p−2−k = δΘk−1,p−1−k + (−1)ki∗Ωk,p−1−k, 1 ≤ k ≤ p − 2, (2.37b)

dΞp,−1 = δΩp−1,0, (2.38a)

dΥ p−1,−1 = (−1)p−1(δΘp−2,0 + (−1)p−1i∗Ωp−1,0). (2.38b)

Note that(Ξp, Υ p−1) ∈ Z
p

dR(X, Y) (cf. Eq. (2.32a) and (2.32b)) and(Ξp,−1, Υ p−1,−1) ∈
Z

p

C(X, Y,O) (cf.Eq. (2.34a) and (2.34b)). We call aY relativeČech–de Rhamp-cointertwiner
(Ξ−1,p, Υ−1,p−1; {Ωk,p−1−k|k ∈ Ip−1}, {Θk,p−2−k|k ∈ Ip−2}; Ξp,−1, Υ p−1,−1) of X

trivial if

Ξ−1,p = dξ−1,p−1, (2.39a)

Υ−1,p−1 = i∗ξ−1,p−1 − dυ−1,p−2, (2.39b)

Ωk,p−1−k = dωk,p−2−k + δωk−1,p−1−k, 0 ≤ k ≤ p − 1, (2.40a)

Θk,p−2−k = dθk,p−3−k + δθk−1,p−2−k + (−1)ki∗ωk,p−2−k, 0 ≤ k ≤ p − 2,

(2.40b)

Ξp,−1 = δξp−1,−1, (2.41a)

Υ p−1,−1 = i∗ξp−1,−1 − δυp−2,−1, (2.41b)

whereξ−1,p−1 ∈ C−1,p−1(X,O), υ−1,p−2 ∈ C−1,p−2(Y,O ∩ Y), ωk,p−2−k ∈ Ck,p−2−k

(X,O), for −1 ≤ k ≤ p − 1, θk,p−3−k ∈ Ck,p−3−k(Y,O ∩ Y), for −1 ≤ k ≤ p − 2,
ξp−1,−1 ∈ Cp−1,−1(X,O), υp−2,−1 ∈ Cp−2,−1(Y,O ∩ Y) with

ξ−1,p−1 = ω−1,p−1, (2.42a)

υ−1,p−2 = θ−1,p−2, (2.42b)

ξp−1,−1 = ωp−1,−1, (2.43a)

υp−2,−1 = (−1)p−2θp−2,−1. (2.43b)

We denote by ZIpCdR(X, Y,O), BIpCdR(X, Y, O) the spaces ofY relative Čech–de Rham
p-cointertwiners and trivial cointertwiners ofX, respectively. Two relativep-cointertwiners
are equivalent if their difference is trivial. The equivalence classes ofY relativeČech–de
Rhamp-cointertwiners ofX form a space HIpCdR(X, Y,O). The notion of cointertwiner given
here is the generalization of that of ‘coelement’ of[39] suitable for relative cohomology.



R. Zucchini / Journal of Geometry and Physics 46 (2003) 355–393 367

2.3. Integral relativeČech cohomology and relative differential cocycles

A Y relative integerČechp-cochain(Ξ̂p,−1, Υ̂ p−1,−1) of X is a pair of integeřCech
cochainsΞ̂p,−1 ∈ Cp,−1

Z
(X,O), Υ̂ p−1,−1 ∈ Cp−1,−1

Z
(Y,O ∩ Y). Clearly, a relative integer

Čech cochain is also a relative realČech cochain. AY relative integerČechp-cochain
(Ξ̂p,−1, Υ̂ p−1,−1) of X is a cocycle if it satisfiesEq. (2.34a) and (2.34b)with (Ξp,−1,

Υ p−1,−1) replaced by(Ξ̂p,−1, Υ̂ p−1,−1), so that it is a cocycle also when seen as a rel-
ative realČech cochain. AY relative integerČechp-cocycle(Ξ̂p,−1, Υ̂ p−1,−1) of X is
a coboundary if it satisfiesEq. (2.35a) and (2.35b)with (ξp−1,−1, υp−2,−1) replaced by
anyY relative integerČechp − 1-cochain(ξ̂p−1,−1, υ̂p−2,−1), so that it is a coboundary
also when seen as a relative realČech cochain. We denote byC

p

CZ(X, Y,O), Z
p

CZ(X, Y,O),
B

p

CZ(X, Y,O) the groups ofY relative integeřCechp-cochains, cocycles and coboundaries
of X, respectively. Two relative integerp-cocycles are equivalent if their difference is an
integerp-coboundary. The equivalence classes ofY relative integeřCechp-cocycles ofX
form thepth relative integeřCech cohomology groupHp

CZ(X, Y,O).
A Y relative differentialp-cocycle ofX is aČech 6-tuple(Ξp,−1, Υ p−1,−1; Ξ∗p−1,−1,

Υ ∗p−2,−1; Ξ̂p,−1, Υ̂ p−1,−1), whereΞp,−1 ∈ Cp,−1(X,O), Υ p−1,−1 ∈ Cp−1,−1(Y,O ∩
Y), Ξ∗p−1,−1 ∈ Cp−1,−1(X,O), Υ ∗p−2,−1 ∈ Cp−2,−1(Y,O ∩ Y), Ξ̂p,−1 ∈ Cp,−1

Z
(X,O),

Υ̂ p−1,−1 ∈ Cp−1,−1
Z

(Y,O ∩ Y), satisfying

δΞp,−1 = 0, (2.44a)

i∗Ξp,−1 − δΥ p−1,−1 = 0, (2.44b)

δΞ∗p−1,−1 = Ξ̂p,−1 − Ξp,−1, (2.45a)

i∗Ξ∗p−1,−1 − δΥ ∗p−2,−1 = Υ̂ p−1,−1 − Υ p−1,−1, (2.45b)

δΞ̂p,−1 = 0, (2.46a)

i∗Ξ̂p,−1 − δΥ̂ p−1,−1 = 0. (2.46b)

Note that(Ξp,−1, Υ p−1,−1) ∈ Z
p

C(X, Y,O) and (Ξ̂p,−1, Υ̂ p−1,−1) ∈ Z
p

CZ(X, Y,O) (cf.
Eq. (2.34a) and (2.34b)). A Y relative differential p-cocycle (Ξp,−1, Υ p−1,−1;
Ξ∗p−1,−1, Υ ∗p−2,−1; Ξ̂p,−1, Υ̂ p−1,−1) of X is a differential coboundary if

Ξp,−1 = δξp−1,−1, (2.47a)

Υ p−1,−1 = i∗ξp−1,−1 − δυp−2,−1, (2.47b)

Ξ∗p−1,−1 = ξ̂p−1,−1 − ξp−1,−1, (2.48a)

Υ ∗p−2,−1 = υ̂p−2,−1 − υp−2,−1, (2.48b)

Ξ̂p,−1 = δξ̂p−1,−1, (2.49a)

Υ̂ p−1,−1 = i∗ξ̂p−1,−1 − δυ̂p−2,−1, (2.49b)

whereξp−1,−1 ∈ Cp−1,−1(X,O),υp−2,−1 ∈ Cp−2,−1(Y,O∩Y), ξ̂p−1,−1 ∈ Cp−1,−1
Z

(X,O),

υ̂p−2,−1 ∈ Cp−2,−1
Z

(Y,O∩ Y). We denote by ZDpC(X, Y,O), BDp

C(X, Y,O) the groups ofY
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relative differentialp-cocycles and coboundaries ofX, respectively. Two relative differential
p-cocycles are equivalent if their difference is a differential coboundary. The equivalence
classes ofY relative differentialp-cocycle ofX form a group HDpC(X, Y,O). An analogous
notion of differential cocycle has been introduced for the absolute case in[15].

A Y relative differential p-cocycle (Ξp,−1, Υ p−1,−1; Ξ∗p−1,−1, Υ ∗p−2,−1; Ξ̂p,−1,

Υ̂ p−1,−1) of X is torsion if it is of the form(2.47a)–(2.49b)with ξ̂p−1,−1 ∈ Cp−1,−1(X,O),
υ̂p−2,−1 ∈ Cp−2,−1(Y,O∩Y) subject to the conditionδξ̂p−1,−1 ∈ Cp,−1

Z
(X,O), i∗ξ̂p−1,−1−

δυ̂p−2,−1 ∈ Cp−1,−1
Z

(Y,O∩Y). Torsion differential cocycles form a subgroup ZDp

Ct(X, Y,O)

of ZDp

C(X,Y,O). Being invariant under translation by BDp

C(X, Y,O), ZDp

Ct(X, Y,O)projects
to a subgroup HDpCt(X, Y,O) of HDp

C(X, Y,O).

2.4. Relative homology andO-small homology isomorphism and the relativeČech
singular/Čech–de Rham isomorphisms

The barycentric subdivision operatorq (cf. Section 2.1) acts on relative chains in ob-
vious fashion. For any relative chain(Sp−1, Tp−2) ∈ Cs

p−1(X, Y), there is an integer

k(Sp−1, Tp−2,O) ≥ 0 such that(qkSp−1, qkTp−2) ∈ CsO
p−1(X, Y) is O-small for k ≥

k(Sp−1, Tp−2,O). By the chain relation(2.5), if (Sp−1, Tp−2) ∈ Zs
p−1(X, Y) is a relative

cycle, then(qkSp−1, qkTp−2) ∈ ZsO
p−1(X, Y) also is. If (Sp−1, Tp−2) ∈ Bs

p−1(X, Y) is a

relative boundary, then(qkSp−1, qkTp−2) ∈ BsO
p−1(X, Y) also is and the corresponding rela-

tive chain(qksp, qktp−1) isO-small fork large enough (cf.Eq. (2.21a) and (2.21b)). Using
the chain relation(2.5)and the homotopy relation(2.6), it is possible to construct a chain
equivalence of the complex ofY relative singular chains and that ofO-small Y relative
singular chains for any open coveringO of X [36]. Hence, the corresponding homologies
are isomorphic:

Hs
p−1(X, Y) ∼= HsO

p−1(X, Y). (2.50)

We say that the open coveringO of X is a good covering of the pairX, Y , if O is a good
covering ofX andO ∩ Y is good a covering ofY (seeAppendix A).

AnO-smallY relative singularp − 1-cycle(Sp−1, Tp−2) ∈ ZsO
p−1(X, Y) and aY relative

integerČechp-cycle (Sp−1,−1, Tp−2,−1) ∈ ZC
p−1(X, Y,O) are said to be compatible if

they fit into someY relativeČech singularp-intertwiner(S−1,p−1, T−1,p−2; {Vk,p−1−k},
{Zk,p−2−k};Sp−1,−1, Tp−2,−1) ∈ ZICs

p−1(X, Y,O) (cf.Eqs. (2.20a), (2.20b), (2.22a), (2.22b),
(2.24a)–(2.26b)). FromEqs. (2.21a), (2.21b), (2.23a), (2.23b), (2.27a)–(2.29b), it follows
that anyO-smallY relative singularp − 1-boundary(Sp−1, Tp−2) ∈ BsO

p−1(X, Y) is always

compatible with anyY relative integerČechp-boundary(Sp−1,−1, Tp−2,−1) ∈ BC
p−1(X,

Y,O) through a trivial intertwiner in BICs
p−1(X, Y,O). Therefore, the compatibility rela-

tion in ZsO
p−1(X, Y) × ZC

p−1(X, Y,O) defined above induces a compatibility relation in

HsO
p−1(X, Y) × HC

p−1(X, Y,O) at the level of relative homology. A fundamental theorem
states that, whenO is a good covering of the pairX, Y , this relation is actually an isomor-
phism
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HsO
p−1(X, Y) ∼= HC

p−1(X, Y,O). (2.51)

Its proof is analogous to that of the absolute case[34]. On account of the isomorphism
(2.50), we find out that, for such coverings,HC

p−1(X, Y,O) does not depend onO up to
isomorphism.

A Y relative de Rhamp-cocycle(Ξp, Υ p−1) ∈ Z
p

dR(X, Y) and aY relative realČech
p-cocycle(Ξp,−1, Υ p−1,−1) ∈ Z

p

C(X, Y,O) are said to be compatible if they fit into someY

relativeČech–de Rhamp-cointertwiner(Ξ−1,p, Υ−1,p−1; {Ωk,p−1−k}, {Θk,p−2−k}; Ξp,−1,

Υ p−1,−1) ∈ ZIpCdR(X, Y,O) (cf. Eqs. (2.32a), (2.32b), (2.34a), (2.34b), (2.36a)–(2.38b)).
From Eqs. (2.33a), (2.33b), (2.35a), (2.35b), (2.39a)–(2.41b), it follows that aY relative
de Rhamp-coboundary(Ξp, Υ p−1) ∈ B

p

dR(X, Y) is compatible with anyY relative real
Čechp-coboundary(Ξp,−1, Υ p−1,−1) ∈ B

p

C(X, Y,O) through a trivial cointertwiner in
BIpCdR(X, Y,O). Therefore, the compatibility relation inZp

dR(X, Y) × Z
p

C(X, Y,O) defined
above induces a compatibility relation inHp

dR(X, Y) × H
p

C(X, Y,O) at the level of relative
cohomology. A fundamental theorem states that, whenO is a good covering of the pairX,
Y , this relation is actually an isomorphism:

H
p

dR(X, Y) ∼= H
p

C(X, Y,O) (2.52)

so that for such coveringsHp

C(X, Y,O) does not depend onO up to isomorphism. Again,
the proof is analogous to that of the absolute case[34].

2.5. Integrality in relative cohomology

As is well known, given any Abelian groupG, by dualization via the functor HomZ(·, G)

of the singular chain complex of a manifoldM, one can construct the singular cochain
complex ofM with coefficients inG. When an open coveringO of M is given, one can
similarly defineO-small singular cochains anďCech singular cochains with coefficients
in G. This allows one to set up a cohomological framework that parallels completely the
original homological one (see Refs.[34,36] for background material). The generalization
to the relative case is straightforward.

Proceeding as outlined above, it is possible to introduce the relative real singular coho-
mology spaceHp

s (X, Y) and the relative integer singular cohomology groupH
p

sZ(X, Y).
The natural inclusion of the group of relative integer singular cochains into the space of

relative real singular cochains is a cochain map. Thus, there is a canonical homomorphism
H

p

sZ(X, Y) → H
p
s (X, Y) of relative singular cohomology. Its kernel Torp

s (X, Y) is the
relative singular torsion subgroup ofH

p

sZ(X, Y). Its rangeH̃p

sZ(X, Y) is the relative integer
singular cohomology lattice ofHp

s (X, Y).
The above setting has a faithful translation in relativeČech cohomology. LetO be

a covering ofX. The inclusionC
p

CZ(X, Y,O) → C
p

C(X, Y,O) is a cochain map (cf.
Section 2.3). Thus, it induces a homomorphismHp

CZ(X, Y,O) → H
p

C(X, Y,O) of the
relative integerČech cohomology group into the relative realČech cohomology space.
Its kernel TorpC(X, Y,O) is the relativeČech torsion subgroup ofHp

CZ(X, Y,O). Its range
H̃

p

CZ(X, Y,O) is the relative integeřCech cohomology lattice ofHp

C(X, Y,O).
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If O is restricted to be a good open covering ofX, Y (cf. Section 2.4), then relative
singular cohomology and relativěCech cohomology are completely isomorphic:

H
p

sZ(X, Y) ∼= H
p

CZ(X, Y,O), (2.53)

Torps (X, Y) ∼= TorpC(X, Y,O), (2.54)

H
p
s (X, Y) ∼= H

p

C(X, Y,O), (2.55)

H̃
p

sZ(X, Y) ∼= H̃
p

CZ(X, Y,O). (2.56)

The above isomorphisms are consistent: the isomorphisms(2.54) and (2.56)are the re-
striction the isomorphisms(2.53) and (2.55), respectively. Further, the homomorphism
H

p

CZ(X, Y,O) → H
p

C(X, Y,O) is obtained by the composition of the homomorphism
H

p

sZ(X, Y) → H
p
s (X, Y) with the isomorphisms(2.53) and (2.55). The proofs are formally

analogous to that of the isomorphism(2.52), though extra work must be done to show the
isomorphism ofO-small relative singular cohomology and relative singular cohomology.
Note that, by(2.53)–(2.56), H

p

CZ(X, Y,O), TorpC(X, Y,O), H
p

C(X, Y,O), H̃
p

CZ(X, Y,O) are
all independent from the good open coveringO up to isomorphism.

Let O be a good open covering ofX, Y . A Y relative realČechp-cocycle(Ξp,−1,

Υ p−1,−1) ∈ Z
p

C(X, Y,O) is said cohomologically integer if it fits into someY relative
differential p-cocycle(Ξp,−1, Υ p−1,−1; Ξ∗p−1,−1, Υ ∗p−2,−1; Ξ̂p,−1, Υ̂ p−1,−1) ∈ ZDp

C
(X, Y,O) (cf. Eqs. (2.34a), (2.34b), (2.44a)–(2.46b)). FromEqs. (2.35a), (2.35b), (2.47a)–
(2.49b), it follows that anyY relative realČechp-coboundary(Ξp,−1, Υ p−1,−1) ∈ B

p

C
(X, Y,O) is always cohomologically integer, being part of a differential coboundary in
BDp

C(X, Y,O). We denote byZ̃p

CZ(X, Y,O) the subgroup ofZp

C(X, Y,O) formed by the
cohomologically integer relative realČechp-cocycles. Being invariant under translation by
B

p

C(X, Y,O), Z̃
p

CZ(X, Y,O) projects to a lattice ofHp

C(X, Y,O). Clearly,Zp

CZ(X, Y,O) ⊆
Z̃

p

CZ(X, Y,O) (cf. Section 2.3) and the lattice mentioned is precisely the relative integer
Čech cohomology latticẽHp

CZ(X, Y,O) introduced above.
A Y relative de Rhamp-cocycle(Ξp, Υ p−1) ∈ Z

p

dR(X, Y) is said cohomologically inte-
ger, if it is compatible with some cohomologically integerY relative realČechp-cocycle
(Ξp,−1, Υ p−1,−1) ∈ Z̃

p

CZ(X, Y,O) for some good open coveringOof X,Y (cf.Section 2.4).
A Y relative de Rhamp-coboundary(Ξp, Υ p−1) ∈ B

p

dR(X, Y) is always cohomologically
integer, since it is compatible with aY relative reaľCechp-coboundary(Ξp,−1, Υ p−1,−1) ∈
B

p

C(X, Y,O), which is necessarily cohomologically integer, for any good open coveringO.
We denote byZp

dRZ(X, Y) be the subgroup ofZp

dR(X, Y) formed by the cohomologically
integer relative de Rhamp-cocycles. SinceZp

dRZ(X, Y) is invariant under translation by
B

p

dR(X, Y), Z
p

dRZ(X, Y) projects to a lattice subgroupHp

dRZ(X, Y) of H
p

dR(X, Y). For any
fixed good coveringO, every cohomologically integer de Rhamp-cocycle(Ξp, Υ p−1) ∈
Z

p

dRZ(X, Y) is compatible with a cohomologically integerY relative realČechp-cocycle
(Ξp,−1, Υ p−1,−1) ∈ Z̃

p

CZ(X, Y,O). Further,Hp

dRZ(X, Y) corresponds precisely to the rela-
tive integerČech cohomology latticẽHp

CZ(X, Y,O) under theČech–de Rham isomorphism
(2.52).
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From(2.52), (2.55) and (2.56)and the above discussion, one deduces the isomorphisms

H
p

dR(X, Y) ∼= H
p
s (X, Y), (2.57)

H
p

dRZ(X, Y) ∼= H̃
p

sZ(X, Y), (2.58)

the isomorphism(2.58)being the restriction of that of(2.57).

3. The relative Cheeger–Simons differential characters

Let p, X, Y satisfy the assumptions stated at the end ofSection 2.1and letO be a good
covering ofX, Y (cf. Section 2.4).

3.1. Construction of the mapsIO1 andIO2

We now define two basic realvalued functions,IO1 , IO2 , of the appropriate relative data.
In view of the construction of relative Cheeger–Simons differential characters, we analyze
in detail the properties ofIO1 , IO2 , when the relative data are varied by trivial amounts. Here,
we systematically use the notation(2.15)for conciseness.

The first function,IO1 , depends on the following relative data: a relativeČech singular
p−1-intertwiner(S−1,p−1, T−1,p−2; {Vk,p−1−k|k ∈ Ip−1}, {Zk,p−2−k|k ∈ Ip−2}; Sp−1,−1,

Tp−2,−1) ∈ ZICs
p−1(X, Y,O) (cf. Eqs. (2.24a)–(2.26b)); a relativeČech–de Rhamp-cointert-

winer (Ξ−1,p, Υ−1,p−1; {Ωk,p−1−k|k ∈ Ip−1}, {Θk,p−2−k|k ∈ Ip−2}; Ξp,−1, Υ p−1,−1) ∈
ZIpCdR(X, Y,O) (cf. Eqs. (2.36a)–(2.38b)). It is given by

IO1 =
p−1∑
k=0

(−1)k〈Vk,p−1−k, Ωk,p−1−k〉 −
p−2∑
k=0

(−1)k〈Zk,p−2−k, Θk,p−2−k〉. (3.1)

When the relative arguments are varied by arbitrary amounts (generically denoted by>)
the variation>IO1 of IO1 is given by

>IO1 =
p−1∑
k=0

(−1)k〈Vk,p−1−k, >Ωk,p−1−k〉 −
p−2∑
k=0

(−1)k〈Zk,p−2−k, >Θk,p−2−k〉

+
p−1∑
k=0

(−1)k〈>Vk,p−1−k, Ωk,p−1−k〉 −
p−2∑
k=0

(−1)k〈>Zk,p−2−k, Θk,p−2−k〉

+
p−1∑
k=0

(−1)k〈>Vk,p−1−k, >Ωk,p−1−k〉−
p−2∑
k=0

(−1)k〈>Zk,p−2−k, >Θk,p−2−k〉.

(3.2)

If (>S−1,p−1, >T−1,p−2; {>Vk,p−1−k}, {>Zk,p−2−k}; >Sp−1,−1, >Tp−2,−1) ∈ BICs
p−1

(X, Y,O) is a trivial relative intertwiner (cf. Eqs(2.27a)–(2.29b)) and(>Ξ−1,p, >Υ−1,p−1;
{>Ωk,p−1−k}, {>Θk,p−2−k}; >Ξp,−1, >Υ p−1,−1) ∈ BIpCdR(X, Y,O) is a trivial relative
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cointertwiner (cf.Eqs. (2.39a)–(2.41b)), one has

>IO1 = 〈S−1,p−1, ξ−1,p−1〉 − 〈T−1,p−2, υ−1,p−2〉 + 〈s−1,p, Ξ−1,p〉
−〈t−1,p−1, Υ−1,p−1〉 + 〈s−1,p, dξ−1,p−1〉
−〈t−1,p−1, i∗ξ−1,p−1 − dυ−1,p−2〉 + (−1)p−1[〈Sp−1,−1, ξp−1,−1〉
−〈Tp−2,−1, υp−2,−1〉 + 〈sp,−1, Ξp,−1〉 − 〈tp−1,−1, Υ p−1,−1〉
+〈sp,−1, δξp−1,−1〉 − 〈tp−1,−1, i∗ξp−1,−1 − δυp−2,−1〉]. (3.3)

The second function,IO2 , depends on the following relative data: a relative integerČech
p − 1-cycle (Sp−1,−1, Tp−2,−1) ∈ ZC

p−1(X, Y,O) (cf. Eq. (2.22a) and (2.22b)); a rel-

ative differentialp-cocycle (Ξp,−1, Υ p−1,−1; Ξ∗p−1,−1, Υ ∗p−2,−1; Ξ̂p,−1, Υ̂ p−1,−1) ∈
ZDp

C(X, Y,O) (cf. Eqs. (2.44a)–(2.46b)). It is given by

IO2 = (−1)p−1[〈Sp−1,−1, Ξ∗p−1,−1〉 − 〈Tp−2,−1, Υ ∗p−2,−1〉]. (3.4)

When the relative arguments are varied by arbitrary amounts (again generically denoted by
>), the variation>IO2 of IO2 is given by

>IO2 = (−1)p−1[〈Sp−1,−1, >Ξ∗p−1,−1〉 − 〈Tp−2,−1, >Υ ∗p−2,−1〉
+〈>Sp−1,−1, Ξ∗p−1,−1〉 − 〈>Tp−2,−1, Υ ∗p−2,−1〉
+〈>Sp−1,−1, >Ξ∗p−1,−1〉 − 〈>Tp−2,−1, >Υ ∗p−2,−1〉]. (3.5)

If (>Sp−1,−1, >Tp−2,−1) ∈ BC
p−1(X, Y,O) is a relativeČech boundary (cf.Eq. (2.23a)

and (2.23b)) and(>Ξp,−1, >Υ p−1,−1; >Ξ∗p−1,−1, >Υ ∗p−2,−1; >Ξ̂p,−1, >Υ̂ p−1,−1) ∈
BDp

C(X, Y,O) or ZDp

Ct(X, Y,O) is either a relative differential coboundary or a torsion
relative differential cocycle (cf.Eqs. (2.47a)–(2.49b)), then

>IO2 = −(−1)p−1[〈Sp−1,−1, ξp−1,−1〉 − 〈Tp−2,−1, υp−2,−1〉
+〈sp,−1, Ξp,−1〉 − 〈tp−1,−1, Υ p−1,−1〉 + 〈sp,−1, δξp−1,−1〉
−〈tp−1,−1, i∗ξp−1,−1 − δυp−2,−1〉] + (−1)p−1[〈Sp−1,−1, ξ̂p−1,−1〉
−〈Tp−2,−1, υ̂p−2,−1〉 + 〈sp,−1, Ξ̂p,−1〉 − 〈tp−1,−1, Υ̂ p−1,−1〉
+〈sp,−1, δξ̂p−1,−1〉 − 〈tp−1,−1, i∗ξ̂p−1,−1 − δυ̂p−2,−1〉]. (3.6)

Let (Sp−1, Tp−2) ∈ ZsO
p−1(X, Y), (Ξp, Υ p−1) ∈ Z

p

dRZ(X, Y) be, respectively, anO-small
relative singularp − 1-cycle (cf.Eq. (2.20a) and (2.20b)andSection 2.2) and a cohomo-
logically integer relative de Rhamp-cocycle (cf.Eq. (2.32a) and (2.32b)andSection 2.5).
From the discussion ofSections 2.4 and 2.5, we can carry out the following construction.

(Sp−1, Tp−2) can be extended to some relativeČech singularp−1-intertwiner(S−1,p−1,

T−1,p−2; {Vk,p−1−k}, {Zk,p−2−k}; Sp−1,−1, Tp−2,−1) ∈ ZICs
p−1(X, Y,O) (cf. Eqs. (2.24a)–

(2.26b)andSection 2.4). By standardČech singular techniques, one easily sees that the
intertwiner(S−1,p−1, T−1,p−2; {Vk,p−1−k}, {Zk,p−2−k}; Sp−1,−1, Tp−2,−1) is defined up to
a trivial relativeČech singular intertwiner of the form(2.27a)–(2.29b)with s−1,p = 0,
t−1,p−1 = 0.
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(Ξp, Υ p−1) can be extended to some relativeČech–de Rhamp-cointertwiner(Ξ−1,p,

Υ−1,p−1; {Ωk,p−1−k}, {Θk,p−2−k}; Ξp,−1, Υ p−1,−1) ∈ ZIpCdR(X, Y,O) (cf. Eqs. (2.36a)–
(2.38b)andSection 2.4). By the standarďCech–de Rham techniques, it is easy to see that the
cointertwiner(Ξ−1,p, Υ−1,p−1; {Ωk,p−1−k}, {Θk,p−2−k}; Ξp,−1, Υ p−1,−1) is defined up
to a trivial relativeČech–de Rham cointertwiner of the form(2.39a)–(2.41b)with ξ−1,p−1 =
0, υ−1,p−2 = 0.

As (Ξp, Υ p−1) is cohomologically integer, the relative realČechp-cocycle(Ξp,−1,

Υ p−1,−1) ∈ Z̃
p

CZ(X, Y,O) is cohomologically integer as well (cf.Section 2.5). Then,
(Ξp,−1, Υ p−1,−1)fits into some relative differentialp-cocycle(Ξp,−1, Υ p−1,−1; Ξ∗p−1,−1,

Υ ∗p−2,−1; Ξ̂p,−1, Υ̂ p−1,−1) ∈ ZDp

C(X, Y,O) (cf.Eqs. (2.44a)–(2.46b)andSection 2.5). As
(Ξp,−1, Υ p−1,−1) is defined only up to a relative realČech coboundary of the form(2.35a)
and (2.35b), the relative differential cocycle(Ξp,−1, Υ p−1,−1; Ξ∗p−1,−1, Υ ∗p−2,−1;
Ξ̂p,−1, Υ̂ p−1,−1) is determined up to a torsion relative differential cocycle of the form
(2.47a)–(2.49b). Indeed, when the relativěCech torsion TorpC(X, Y,O) is non-vanishing, the
cohomology class of the relative integerČech cocycle(Ξ̂p,−1, Υ̂ p−1,−1) in H

p

CZ(X, Y,O) is
not uniquely fixed by that of the relative realČech cocycle(Ξp,−1, Υ p−1,−1) in H

p

C(X, Y,O)

and, thus, the ambiguity of the relative differential cocycle is not in general a relative dif-
ferential coboundary.

Using the relative homological and cohomological data obtained in this way from
(Sp−1, Tp−2) and(Ξp, Υ p−1), we set

IO = IO1 + IO2 . (3.7)

Since, however, those data are not determined by(Sp−1, Tp−2) and(Ξp, Υ p−1) in unique
fashion, as explained above,IO is affected by an ambiguity>IO which we are now going
to compute.

From the above discussion, by inspection of(3.3) and (3.6), it appears that the rele-
vant ambiguities of the definition of the relative intertwiner(S−1,p−1, T−1,p−2; {Vk,p−1−k},
{Zk,p−2−k}; Sp−1,−1, Tp−2,−1), the relative cointertwiner(Ξ−1,p, Υ−1,p−1; {Ωk,p−1−k},
{Θk,p−2−k}; Ξp,−1, Υ p−1,−1) and the relative differential cocycle(Ξp,−1, Υ p−1,−1;
Ξ∗p−1,−1, Υ ∗p−2,−1; Ξ̂p,−1, Υ̂ p−1,−1) are those parameterized by the relative integerČech
chain(sp,−1, tp−1,−1), the relative reaľCech cochain(ξp−1,−1, υp−2,−1) and the relative
real Čech cochain(ξ̂p−1,−1, υ̂p−2,−1) subject to the condition that the relative cobound-
ary (δξ̂p−1,−1, i∗ξ̂p−1,−1 − δυ̂p−2,−1) is integer (cf.(2.27a)–(2.29b), (2.39a)–(2.41b),
(2.47a)–(2.49b)and the previous discussion). The crucial point to be noted here is that
the relativeČech cochain(ξp−1,−1, υp−2,−1) parameterizing the ambiguity of the relative
Čech cocycle(Ξp,−1, Υ p−1,−1) is the same for both the relative cointertwiner and the
relative differential cocycle. Taking this into account, from(3.3) and (3.6)with s−1,p = 0,
t−1,p−1 = 0, ξ−1,p−1 = 0, υ−1,p−2 = 0, we find that

>IO = (−1)p−1[〈Sp−1,−1, ξ̂p−1,−1〉 − 〈Tp−2,−1, υ̂p−2,−1〉 + 〈sp,−1, Ξ̂p,−1〉
−〈tp−1,−1, Υ̂ p−1,−1〉 + 〈sp,−1, δξ̂p−1,−1〉 − 〈tp−1,−1, i∗ξ̂p−1,−1

−δυ̂p−2,−1〉]. (3.8)
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>IO is clearly non-zero in general. Thus,IO is not unambiguously defined. However, the
above expression suggests that, under certain conditions,>IO might be integer valued. In
such a case,IO would be unambiguously defined modulo integers.

If (ξ̂p−1,−1, υ̂p−2,−1) were an relative integeřCech cochain,>IO would be integer.
However, because of torsion, the relativeČech cochain(ξ̂p−1,−1, υ̂p−2,−1) is real, being
only subject to the condition that the relative coboundary(δξ̂p−1,−1, i∗ξ̂p−1,−1−δυ̂p−2,−1)

is integer. So the first two terms of the right hand side of(3.8)and thus>IO are generally
not integer valued.

If we insist that>IO be integer, we have to restrict the ambiguity inherent in the choice of
the differential cocycle(Ξp,−1, Υ p−1,−1; Ξ∗p−1,−1, Υ ∗p−2,−1; Ξ̂p,−1, Υ̂ p−1,−1) which is
responsible for the non-integrality of(ξ̂p−1,−1, υ̂p−2,−1). This can be achieved in two steps.

We first restrict the choice of the relative integerČech cocycle(Ξ̂p,−1, Υ̂ p−1,−1) by
fixing its cohomology class inHp

CZ(X, Y,O) among those classes ofH
p

CZ(X, Y,O) whose
image inH

p

C(X, Y,O) is represented by the relative realČech cocycle(Ξp,−1, Υ p−1,−1)

(cf. Section 2.5). By inspecting(2.47a)–(2.49b)for given(ξp−1,−1, υp−2,−1), it is easy to
see that the relative realČech cochain(ξ̂p−1,−1, υ̂p−2,−1) is restricted in this way to be
integer up to a relative realČech cocycle.

Such a cocycle parameterizes the set of the possible choices of the relative realČech
cochain(Ξ∗p−1,−1, Υ ∗p−2,−1) for given (Ξp,−1, Υ p−1,−1), (Ξ̂p,−1, Υ̂ p−1,−1). It is nat-
ural to identify two choices of(Ξ∗p−1,−1, Υ ∗p−2,−1) if they yield the same value ofIO

modulo integers for all(Sp−1, Tp−2) ∈ ZsO
p−1(X, Y). From (3.8), on account of(2.22a)

and (2.22b), it is apparent that two choices of(Ξ∗p−1,−1, Υ ∗p−2,−1) are equivalent when
their difference is a cohomologically integer relative cocycle (cf.Section 2.5). Thus, the set
of equivalence classes of choices of(Ξ∗p−1,−1, Υ ∗p−2,−1) is parameterized by the quo-
tientZp−1

C (X, Y,O)/ Z̃
p−1
CZ (X, Y,O) or, what is the same, by the relativeČech cohomology

torusH
p−1
C (X, Y,O)/ H̃

p−1
CZ (X, Y,O). From its definition, it is clear that the parametriza-

tion is non-canonical, depending on an arbitrary choice of a reference relativeČech cochain
(Ξ∗p−1,−1, Υ ∗p−2,−1) corresponding to the origin of the torus.

We next restrict the choice of the relative realČech cochain(Ξ∗p−1,−1, Υ ∗p−2,−1) by
fixing its image inH

p−1
C (X, Y,O)/H̃

p−1
CZ (X, Y,O).

The relative realČech cochain(ξ̂p−1,−1, υ̂p−2,−1) is finally restricted to be integer
up to a cohomologically integer relative cocycle. From(3.8), using(2.22a) and (2.22b)
again, it follows then that, once the above choices are made, the ambiguity>IO is integer
valued.

Recalling the isomorphisms of singular, de Rham andČech cohomology discussed
in Section 2.5, we conclude that we can unambiguously define a family of mapsΦO :
ZsO

p−1(X, Y) → R/Z by

ΦO(S, T ; Ξ, Υ) = IO modZ (3.9)

for (Sp−1, Tp−2) ∈ ZsO
p−1(X, Y), depending on a choice of a relative integer singular co-

homology class inHp

sZ(X, Y), a representative(Ξp, Υ p−1) ∈ Z
p

dRZ(X, Y) of the image of
such class inHp

dRZ(X, Y) shown explicitly and a point in the relative de Rham cohomology
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torusH
p−1
dR (X, Y)/H

p−1
dRZ (X, Y). From(3.1), (3.4), (3.7) and (3.9), it appears thatΦO is Z

linear in the first argument.
When(Sp−1, Tp−2), (Ξp, Υ p−1) are shifted by amounts given by the right hand sides

of (2.21a) and (2.21b), with s−1,p, t−1,p−1 O-small, and(2.33a) and (2.33b), respectively,
one has

>ΦO(S, T ; Ξ, Υ) = 〈S−1,p−1, ξ−1,p−1〉 − 〈T−1,p−2, υ−1,p−2〉 + 〈s−1,p, Ξ−1,p〉
−〈t−1,p−1, Υ−1,p−1〉 + 〈s−1,p, dξ−1,p−1〉
−〈t−1,p−1, i∗ξ−1,p−1 − dυ−1,p−2〉 modZ (3.10)

as follows readily from(3.3).
For reasons explained above, theH

p−1
dR (X, Y)/H

p−1
dRZ (X, Y) parametrization of the maps

ΦO is not canonical. The changes of the parametrization are in one-to-one correspondence
with the shifts in the relative de Rham cohomology torus. By the isomorphisms of de Rham
andČech cohomologies ofSections 2.4 and 2.5, any such shift is represented equivalently
by either a relative de Rham cocycle(Π−1,p−1, Σ−1,p−2) defined up to cohomologically
integer relative de Rham cocycles or a relative realČech cocycle(Πp−1,−1, Σp−2,−1)

defined modulo a cohomologically integer relative realČech cocycle. The variation of
ΦO(S, T ; Ξ, Υ) caused by the shift is given by

>ΦO(S, T ; Ξ, Υ) = (−1)p−1[〈Sp−1,−1, Πp−1,−1〉 − 〈Tp−2,−1, Σp−2,−1〉] modZ

(3.11)

as follows from the first two terms of(3.8)with (ξ̂p−1,−1, υ̂p−2,−1) replaced by(Πp−1,−1,

Σp−2,−1). It is straightforward to show that

>ΦO(S, T ; Ξ, Υ) = −[〈S−1,p−1, Π−1,p−1〉 − 〈T−1,p−2, Σ−1,p−2〉] modZ. (3.12)

Indeed, consider the functionIO1 , Eq. (3.1). If we vary theČech–de Rhamp-cointertwiner
(Ξ−1,p, Υ−1,p−1; {Ωk,p−1−k}, {Θk,p−2−k}; Ξp,−1, Υ p−1,−1) by a vanishing amount
(>Ξ−1,p, >Υ−1,p−1; {>Ωk,p−1−k}, {>Θk,p−2−k}; >Ξp,−1, >Υ p−1,−1), then>IO1 = 0
trivially. On the other hand, the totally vanishing trivialČech–de Rhamp-cointertwiner can
be written in the form(2.39a)–(2.41b)with (ξ−1,p−1, υ−1,p−2) = (Π−1,p−1, Σ−1,p−2),
(ξp−1,−1, υp−2,−1) = (Πp−1,−1, Σp−2,−1) for suitableČech–de Rham cochainsωk,p−2−k,
θk,p−3−k. So, by(3.3), >IO1 = 0 is given by the difference of the two above expressions.

3.2. Dependence ofΦO on covering choices

It is important to compare the result of the above construction for two choices of the
underlying good open covering ofX, Y ,O(1),O(2). The basic ideas consists in construct-
ing suitable sequences ofČech (co)chains of the coveringO(1) ∪ O(2) (disjoint union)
interpolating between the giveňCech (co)chains of the individual coveringsO(1),O(2).

To this end, we explicitly indicate thěCech degree with respect the two coverings. So,
Uk,l,n, say, is aČech singular chain of̌Cech degreek, l with respect toO(1), O(2), re-
spectively, and dimensionn. Similarly, Λk,l,n, say, is aČech–de Rham cochain ofČech
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degreek, l with respect toO(1), O(2), respectively, and form degreen. Accordingly, we
have two operatorsβ1, β2 defined as in(2.7) and obeying(2.8). Similarly, we have two
operatorsδ1, δ2 defined as in(2.12)and obeying(2.13). Further, the pairsβ1, δ1 andβ2,
δ2 independently satisfy the duality relations(2.17). Conversely, we have just one oper-
ator b and one operatord, which are the same as before and satisfy the duality relations
(2.16).

A Čech singular chainUk,l,n is a Čech singular chain ofO(1) ∪ O(2) of Čech degree
k + l +1. A Čech singular chain of the formUk,−1,n (U−1,l,n) can be identified with ǎCech
singular chainU(1)

k,−1,n (U(2)
−1,l,n) of O(1) (O(2)) of Čech degreek (l) having the property

of beingO(2)-small (O(1)-small). The operatorβ appropriate for thěCech singular chains
of O(1) ∪ O(2) is the sumβ1 + (−1)deg(1)+1β2 while that for theČech singular chains
of O(1) (O(2)) is β1 (β2). Similarly, aČech–de Rham cochainΛk,l,n is aČech–de Rham
cochain ofO(1) ∪O(2) of Čech degreek + l + 1. A Čech–de Rham cochain of the form
Λk,−1,n (Λ−1,l,n) can be identified with ǎCech–de Rham cochainΛk,−1,n

(1) (Λ−1,l,n
(2) ) ofO(1)

(O(2)) of Čech degreek (l). The operatorδ appropriate for thěCech–de Rham cochains of
O(1) ∪O(2) is the sumδ1 + (−1)deg(1)+1δ2 while that for theČech–de Rham cochains of
O(1) (O(2)) is δ1 (δ2).

When stating that a sequence of (co)chains forms a relative (co)chain, (co)cycle, (co)bou-
ndary, (trivial) (co)intertwiner, etc., it is necessary to specify the underlying covering and
the relevantβ or δ operators. If no label is attached to the (co)chains, it is understood that the
covering isO(1)∪O(2) and theβ orδ operators areβ1+(−1)deg(1)+1β2,δ1+(−1)deg(1)+1δ2.
If the label 1 (2) is attached to the (co)chains, it is understood that the covering isO(1)

(O(2)) and theβ or δ operators areβ1 (β2), δ1 (δ2).
SetJr = {(k, l)|k, l ∈ Z, 0 ≤ k, l, 0 ≤ k + l ≤ r}, Kr = {k|k ∈ Z, 0 ≤ k ≤ r}, r ∈ N.

We say that a sequence of chains(S−1,−1,p−1, T−1,−1,p−2; {Vk,l,p−1−k−l|(k, l) ∈ Jp−1},
{Zk,l,p−2−k−l|(k, l) ∈ Jp−2}; {Sk,p−1−k,−1|k ∈ Kp−1}, {Tk,p−2−k,−1|k ∈ Kp−2}) interpo-

lates two relativěCech singularp−1-intertwiners(S(1)
−1,−1,p−1, T

(1)
−1,−1,p−2; {V(1)

k,−1,p−1−k|
k ∈ Ip−1}, {Z(1)

k,−1,p−2−k|k ∈ Ip−2}; S
(1)
p−1,−1,−1, T

(1)
p−2,−1,−1), (S

(2)
−1,−1,p−1, T

(2)
−1,−1,p−2;

{V(2)
−1,k,p−1−k|k ∈ Ip−1}, {Z(2)

−1,k,p−2−k|k ∈ Ip−2}; S
(2)
−1,p−1,−1, T

(2)
−1,p−2,−1) (cf.

Eqs. (2.24a)–(2.26b)), if S−1,−1,p−1, Vk,l,p−1−k−l, Sk,p−1−k,−1 areČech singular chains
of X, T−1,−1,p−2, Zk,l,p−2−k−l, Tk,p−2−k,−1 areČech singular chains inY and

S−1,−1,p−1 = β1β2V0,0,p−1, (3.13a)

T−1,−1,p−2 = −β1β2Z0,0,p−2, (3.13b)

bVk,l,p−1−k−l = β1Vk+1,l,p−2−k−l + (−1)k+1β2Vk,l+1,p−2−k−l

+(−1)k+l+1i∗Zk,l,p−2−k−l,

0 ≤ k, l, 0 ≤ k + l ≤ p − 2, (3.14a)

bZk,l,p−2−k−l = β1Zk+1,l,p−3−k−l + (−1)k+1β2Zk,l+1,p−3−k−l,

0 ≤ k, l, 0 ≤ k + l ≤ p − 3, (3.14b)
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Sk,p−1−k,−1 = bVk,p−1−k,0, (3.15a)

Tk,p−2−k,−1 = −(−1)p−1bZk,p−2−k,0 (3.15b)

with

S
(1)
−1,−1,p−1 = S−1,−1,p−1, S

(2)
−1,−1,p−1 = S−1,−1,p−1, (3.16a)

T
(1)
−1,−1,p−2 = T−1,−1,p−2, T

(2)
−1,−1,p−2 = T−1,−1,p−2, (3.16b)

V
(1)
k,−1,p−1−k = β2Vk,0,p−1−k, V

(2)
−1,k,p−1−k = (−1)kβ1V0,k,p−1−k,

0 ≤ k ≤ p − 1, (3.17a)

Z
(1)
k,−1,p−2−k = −β2Zk,0,p−2−k, Z

(2)
−1,k,p−2−k = −(−1)kβ1Z0,k,p−2−k,

0 ≤ k ≤ p − 2 (3.17b)

S
(1)
p−1,−1,−1 = β2Sp−1,0,−1, S

(2)
−1,p−1,−1 = (−1)p−1β1S0,p−1,−1, (3.18a)

T
(1)
p−2,−1,−1 = β2Tp−2,0,−1, T

(2)
−1,p−2,−1 = (−1)p−2β1T0,p−2,−1. (3.18b)

It is straightforward to check that the above relations are compatible with the relations
(2.24a)–(2.26b)obeyed by the relativěCech singular intertwiners.

For r ∈ N, defineJr = {(k, l)|k, l ∈ Z, −1 ≤ k, l, −1 ≤ k + l ≤ r}, Kr = {k|k ∈
Z, −1 ≤ k ≤ r}. We say that a sequence of cochains(Ξ−1,−1,p, Υ−1,−1,p−1; {Ωk,l,p−2−k−l|
(k, l) ∈ Jp−2}, {Θk,l,p−3−k−l|(k, l) ∈ Jp−3}; {Ξk,p−1−k,−1|k ∈ Kp}, {Υ k,p−2−k,−1|k ∈
Kp−1}) interpolates two relativěCech–de Rhamp-cointertwiners(Ξ−1,−1,p

(1) , Υ
−1,−1,p−1
(1) ;

{Ωk,−1,p−1−k

(1) |k ∈ Ip−1}, {Θk,−1,p−2−k

(1) |k ∈ Ip−2}; Ξ
p,−1,−1
(1) , Υ

p−1,−1,−1
(1) ), (Ξ

−1,−1,p

(2) ,

Υ
−1,−1,p−1
(2) ; {Ω−1,k,p−1−k

(2) |k ∈ Ip−1}, {Θ−1,k,p−2−k

(2) |k ∈ Ip−2}; Ξ
−1,p,−1
(2) , Υ

−1,p−1,−1
(2) )

(cf. Eqs. (2.36a)–(2.38b)), if Ξ−1,−1,p−1, Ωk,l,p−1−k−l, Ξk,p−1−k,−1 areČech–de Rham
co-chains ofX, Υ−1,−1,p−2, Θk,l,p−2−k−l, Υ k,p−2−k,−1 areČech–de Rham cochains inY
and

δ1Ξ
−1,−1,p = dΩ0,−1,p−1, δ2Ξ

−1,−1,p = dΩ−1,0,p−1, (3.19a)

δ1Υ
−1,−1,p−1 = −dΘ0,−1,p−2 + i∗Ω0,−1,p−1,

δ2Υ
−1,−1,p−1 = −dΘ−1,0,p−2 + i∗Ω−1,0,p−1, (3.19b)

dΩk,l,p−2−k−l = δ1Ω
k−1,l,p−1−k−l + (−1)k+1δ2Ω

k,l−1,p−1−k−l,

−1 ≤ k, l, 0 ≤ k + l ≤ p − 2, (3.20a)

dΘk,l,p−3−k−l = δ1Θ
k−1,l,p−2−k−l + (−1)k+1δ2Θ

k,l−1,p−2−k−l

+(−1)k+l+1i∗Ωk,l,p−2−k−l,

−1 ≤ k, l, 0 ≤ k + l ≤ p − 3, (3.20b)



378 R. Zucchini / Journal of Geometry and Physics 46 (2003) 355–393

dΞk,p−1−k,−1 = δ1Ω
k−1,p−1−k,0 + (−1)k+1δ2Ω

k,p−2−k,0, (3.21a)

dΥ k,p−2−k,−1 = (−1)p−1(δ1Θ
k−1,p−2−k,0 + (−1)k+1δ2Θ

k,p−3−k,0

+(−1)p−1i∗Ωk,p−2−k,0) (3.21b)

with

Ξ
−1,−1,p

(1) = Ξ−1,−1,p, Ξ
−1,−1,p

(2) = Ξ−1,−1,p, (3.22a)

Υ
−1,−1,p−1
(1) = Υ−1,−1,p−1, Υ

−1,−1,p−1
(2) = Υ−1,−1,p−1, (3.22b)

Ω
k,−1,p−1−k

(1) = Ωk,−1,p−1−k, Ω
−1,k,p−1−k

(2) = Ω−1,k,p−1−k,

0 ≤ k ≤ p − 1, (3.23a)

Θ
k,−1,p−2−k

(1) = Θk,−1,p−2−k, Θ
−1,k,p−2−k

(2) = Θ−1,k,p−2−k,

0 ≤ k ≤ p − 2, (3.23b)

Ξ
p,−1,−1
(1) = Ξp,−1,−1, Ξ

−1,p,−1
(2) = Ξ−1,p,−1, (3.24a)

Υ
p−1,−1,−1
(1) = Υ p−1,−1,−1, Υ

−1,p−1,−1
(2) = Υ−1,p−1,−1. (3.24b)

It is straightforward to check that the above relations4 are compatible with the relations
(2.36a)–(2.38b)obeyed by the relativěCech–de Rham cointertwiners.

Using the interpolating sequences of (co)chains introduced above, one defines for 0≤
k ≤ p − 2

S1k =
k∑

l=0

〈Vl,k−l,p−1−k, δ1Ω
l−1,k−l,p−1−k + (−1)l+1δ2Ω

l,k−l−1,p−1−k〉

+
k∑

l=0

〈Zl,k−l,p−2−k, δ1Θ
l−1,k−l,p−2−k + (−1)l+1δ2Θ

l,k−l−1,p−2−k〉. (3.25)

Using the relations(2.16), (2.17), (3.14a), (3.14b), (3.17a), (3.17b), (3.20a), (3.20b), (3.23a)
and (3.23b), one finds that, for 1≤ k ≤ p − 2,

(−1)k〈V(1)
k,−1,p−1−k, Ω

k,−1,p−1−k

(1) 〉 − (−1)k〈V(2)
−1,k,p−1−k, Ω

−1,k,p−1−k

(2) 〉
−(−1)k〈Z(1)

k,−1,p−2−k, Θ
k,−1,p−2−k

(1) 〉 + (−1)k〈Z(2)
−1,k,p−2−k, Θ

−1,k,p−2−k

(2) 〉
+S1k − S1k−1 = 0. (3.26)

4 In these formulae, it is assumed conventionally that anyČech–de Rham cochainλk,l,m = 0 wheneverk, l do
not satisfy the restrictions listed at the beginning of this paragraph.
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Hence,

p−2∑
k=1

(−1)k〈V(1)
k,−1,p−1−k, Ω

k,−1,p−1−k

(1) 〉 −
p−2∑
k=1

(−1)k〈Z(1)
k,−1,p−2−k, Θ

k,−1,p−2−k

(1) 〉

−
p−2∑
k=1

(−1)k〈V(2)
−1,k,p−1−k, Ω

−1,k,p−1−k

(2) 〉 +
p−2∑
k=1

(−1)k〈Z(2)
−1,k,p−2−k, Θ

−1,k,p−2−k

(2) 〉

+S1p−2 − S10 = 0. (3.27)

From the definition(3.25), using(2.17), (3.17a), (3.17b), (3.23a) and (3.23b)with k = 0,
one easily sees that

S10 =−〈V(1)
0,−1,p−1, Ω

0,−1,p−1
(1) 〉 + 〈Z(1)

0,−1,p−2, Θ
0,−1,p−2
(1) 〉 + 〈V(2)

−1,0,p−1, Ω
−1,0,p−1
(2) 〉

−〈Z(2)
−1,0,p−2, Θ

−1,0,p−2
(2) 〉. (3.28)

Further, from the definition(3.25), using(2.16), (2.17), (3.14a), (3.17a), (3.20a), (3.20b)
and (3.23a), one finds

S1p−2 =
p−1∑
k=0

〈Vk,p−1−k,0, δ1Ω
k−1,p−1−k,0 + (−1)k+1δ2Ω

k,p−2−k,0〉

+
p−2∑
k=0

〈Zk,p−2−k,0, δ1Θ
k−1,p−2−k,0 + (−1)k+1δ2Θ

k,p−3−k,0

+(−1)p−1i∗Ωk,p−2−k,0〉 + (−1)p−1〈V(1)
p−1,−1,0, Ω

p−1,−1,0
(1) 〉

−(−1)p−1〈V(2)
−1,p−1,0, Ω

−1,p−1,0
(2) 〉. (3.29)

Let IO(1)
1 (I

O(2)
1 ) be constructed according(3.1)using the above (co)intertwiners marked by

the label 1 (2). Substituting(3.28) and (3.29)into (3.27)and using(3.15a), (3.15b), (3.21a)
and (3.21b), one finds

I
O(2)
1 − I

O(1)
1 =

p−1∑
k=0

〈Sk,p−1−k,−1, Ξk,p−1−k,−1〉

−
p−2∑
k=0

〈Tk,p−2−k,−1, Υ k,p−2−k,−1〉. (3.30)

We say that a sequence of chains({Sk,p−1−k,−1|k ∈ Kp−1}, {Tk,p−2−k,−1|k ∈ Kp−2})
interpolates two relative integerČechp−1-cycles(S(1)

p−1,−1,−1, T
(1)
p−2,−1,−1), (S

(2)
−1,p−1,−1,

T
(2)
−1,p−2,−1) (cf. Eq. (2.22a) and (2.22b)), if Sk,p−1−k,−1 are integerČech chains ofX,

Tk,p−2−k,−1 are integeřCech chains inY and

β1Sk+1,p−2−k,−1 + (−1)k+1β2Sk,p−1−k,−1 − i∗Tk,p−2−k,−1 = 0, 0 ≤ k ≤ p − 2,

(3.31a)
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−β1Tk+1,p−3−k,−1 − (−1)k+1β2Tk,p−2−k,−1 = 0, 0 ≤ k ≤ p − 3 (3.31b)

with

S
(1)
p−1,−1,−1 = β2Sp−1,0,−1, S

(2)
−1,p−1,−1 = (−1)p−1β1S0,p−1,−1, (3.32a)

T
(1)
p−2,−1,−1 = β2Tp−2,0,−1, T

(2)
−1,p−2,−1 = (−1)p−2β1T0,p−2,−1. (3.32b)

The above relations are compatible with the relation(2.22a) and (2.22b)obeyed by the
integerČech cycles.

We say that a sequence of cochains({Ξk,p−1−k,−1|k ∈ Kp}, {Υ k,p−2−k,−1|k ∈ Kp−1};
{Ξ∗k,p−2−k,−1|k ∈ Kp−1}, {Υ ∗k,p−3−k,−1|k ∈ Kp−2}; {Ξ̂k,p−1−k,−1|k ∈ Kp},
{Υ̂ k,p−2−k,−1| k ∈ Kp−1}) interpolates two given relative differentialp-cocycles(Ξp,−1,−1

(1) ,

Υ
p−1,−1,−1
(1) ; Ξ

∗p−1,−1,−1
(1) , Υ

∗p−2,−1,−1
(1) ; Ξ̂

p,−1,−1
(1) , Υ̂

p−1,−1,−1
(1) ), (Ξ

−1,p,−1
(2) , Υ

−1,p−1,−1
(2) ;

Ξ
∗−1,p−1,−1
(2) , Υ

∗−1,p−2,−1
(2) ; Ξ̂

−1,p,−1
(2) , Υ̂

−1,p−1,−1
(2) ) (cf. Eqs. (2.44a)–(2.46b)), if

Ξk,p−1−k,−1, Ξ∗k,p−2−k,−1 are realČech cochains ofX, Ξ̂k,p−1−k,−1 is an integerČech
cochain ofX, Υ k,p−2−k,−1, Υ ∗k,p−3−k,−1 are realČech cochains ofY , Υ̂ k,p−2−k,−1 is an
integerČech cochain ofY such that

δ1Ξ
k−1,p−k,−1 + (−1)k+1δ2Ξ

k,p−1−k,−1 = 0, −1 ≤ k ≤ p + 1, (3.33a)

i∗Ξk,p−1−k,−1 − δ1Υ
k−1,p−1−k,−1 − (−1)k+1δ2Υ

k,p−2−k,−1 = 0,

−1 ≤ k ≤ p, (3.33b)

δ1Ξ
∗k−1,p−1−k,−1 + (−1)k+1δ2Ξ

∗k,p−2−k,−1 = Ξ̂k,p−1−k,−1 − Ξk,p−1−k,−1,

−1 ≤ k ≤ p, (3.34a)

i∗Ξ∗k,p−2−k,−1 − δ1Υ
∗k−1,p−2−k,−1 − (−1)k+1δ2Υ

∗k,p−3−k,−1

= Υ̂ k,p−2−k,−1 − Υ k,p−2−k,−1, −1 ≤ k ≤ p − 1, (3.34b)

δ1Ξ̂
k−1,p−k,−1 + (−1)k+1δ2Ξ̂

k,p−1−k,−1 = 0, −1 ≤ k ≤ p + 1, (3.35a)

i∗Ξ̂k,p−1−k,−1 − δ1Υ̂
k−1,p−1−k,−1 − (−1)k+1δ2Υ̂

k,p−2−k,−1 = 0,

−1 ≤ k ≤ p (3.35b)

with

Ξ
p,−1,−1
(1) = Ξp,−1,−1, Ξ

−1,p,−1
(2) = Ξ−1,p,−1, (3.36a)

Υ
p−1,−1,−1
(1) = Υ p−1,−1,−1, Υ

−1,p−1,−1
(2) = Υ−1,p−1,−1, (3.36b)

Ξ
∗p−1,−1,−1
(1) = Ξ∗p−1,−1,−1, Ξ

∗−1,p−1,−1
(2) = Ξ∗−1,p−1,−1, (3.37a)

Υ
∗p−2,−1,−1
(1) = Υ ∗p−2,−1,−1, Υ

∗−1,p−2,−1
(2) = Υ ∗−1,p−2,−1, (3.37b)
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Ξ̂
p,−1,−1
(1) = Ξ̂p,−1,−1, Ξ̂

−1,p,−1
(2) = Ξ̂−1,p,−1, (3.38a)

Υ̂
p−1,−1,−1
(1) = Υ̂ p−1,−1,−1, Υ̂

−1,p−1,−1
(2) = Υ̂−1,p−1,−1 (3.38b)

(cf. footnote 4). It is straightforward to check that the above relations are compatible with
the relations(2.44a)–(2.46b)obeyed by the relative differential cocycles.

Using the interpolating sequences of (co)chains just introduced, one defines

S2 =
p−1∑
k=0

〈Sk,p−1−k,−1, δ1Ξ
∗k−1,p−1−k,−1 + (−1)k+1δ2Ξ

∗k,p−2−k,−1〉

−
p−2∑
k=0

〈Tk,p−2−k,−1, i∗Ξ∗k,p−2−k,−1 − δ1Υ
∗k−1,p−2−k,−1

− (−1)k+1δ2Υ
∗k,p−3−k,−1〉. (3.39)

Using(3.34a) and (3.34b), one has immediately

S2 = −
p−1∑
k=0

〈Sk,p−1−k,−1, Ξk,p−1−k,−1〉 +
p−2∑
k=0

〈Tk,p−2−k,−1, Υ k,p−2−k,−1〉

+
p−1∑
k=0

〈Sk,p−1−k,−1, Ξ̂k,p−1−k,−1〉 −
p−2∑
k=0

〈Tk,p−2−k,−1, Υ̂ k,p−2−k,−1〉. (3.40)

On the other hand, using(2.17), (3.31a)–(3.32b), (3.37a) and (3.37b), one finds

S2 = (−1)p−1[〈S(2)
−1,p−1,−1, Ξ

∗−1,p−1,−1
(2) 〉 − 〈T (2)

−1,p−2,−1, Υ
∗−1,p−2,−1
(2) 〉

− 〈S(1)
p−1,−1,−1, Ξ

∗p−1,−1,−1
(1) 〉 + 〈T (1)

p−2,−1,−1, Υ
∗p−2,−1,−1
(1) 〉]. (3.41)

Now, we note that

p−1∑
k=0

〈Sk,p−1−k,−1, Ξ̂k,p−1−k,−1〉 −
p−2∑
k=0

〈Tk,p−2−k,−1, Υ̂ k,p−2−k,−1〉 = 0 modZ.

(3.42)

Let I
O(1)
2 (I

O(2)
2 ) be constructed according(3.4) using the integeřCech cycle and the dif-

ferential cocycle marked by the label 1 (2). From(3.40) and (3.41), one has then

I
O(2)
2 − I

O(1)
2 = −

p−1∑
k=0

〈Sk,p−1−k,−1, Ξk,p−1−k,−1〉

+
p−2∑
k=0

〈Tk,p−2−k,−1, Υ k,p−2−k,−1〉 modZ. (3.43)
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Let (Sp−1, Tp−2) ∈ Z
sO(i)
p−1 (X, Y), (Ξp, Υ p−1) ∈ Z

p

dRZ(X, Y) be respectively anO(i)-
small relative singular cycle,i = 1, 2 (cf.Eq. (2.20a) and (2.20b)andSection 2.2) and a co-
homologically integer relative de Rham cocycle (cf.Eq. (2.32a) and (2.32b)andSection 2.5).
Let us now repeat the construction described inSection 3.1individually for each of the cov-
eringO(i).

Then, the relative singular cycles(S
(1)
−1,−1,p−1, T

(1)
−1,−1,p−2) = (S−1,−1,p−1, T−1,−1,p−2),

(S
(2)
−1,−1,p−1, T

(2)
−1,−1,p−2) = (S−1,−1,p−1, T−1,−1,p−2) extend toČech singular intert-

winers (S
(1)
−1,−1,p−1, T

(1)
−1,−1,p−2; {V(1)

k,−1,p−1−k}, {Z(1)
k,−1,p−2−k}; S

(1)
p−1,−1,−1, T

(1)
p−2,−1,−1),

(S
(2)
−1,−1,p−1, T

(2)
−1,−1,p−2; {V(2)

−1,k,p−1−k}, {Z(2)
−1,k,p−2−k}; S

(2)
−1,p−1,−1, T

(2)
−1,p−2,−1) defined

up to shifts by trivial intertwiners leaving(S(1)
−1,−1,p−1, T

(1)
−1,−1,p−2), (S

(2)
−1,−1,p−1,

T
(2)
−1,−1,p−2) unchanged, respectively (cf.Sections 2.4 and 3.1).

In similar fashion, the relative de Rham cocycles(Ξ
−1,−1,p

(1) , Υ
−1,−1,p−1
(1) ) = (Ξ−1,−1,p,

Υ−1,−1,p−1), (Ξ
−1,−1,p

(2) , Υ
−1,−1,p−1
(2) ) = (Ξ−1,−1,p, Υ−1,−1,p−1) extend toČech–de

Rham cointertwiners(Ξ−1,−1,p

(1) , Υ
−1,−1,p−1
(1) ; {Ωk,−1,p−1−k

(1) }, {Θk,−1,p−2−k

(1) }; Ξ
p,−1,−1
(1) ,

Υ
p−1,−1,−1
(1) ), (Ξ

−1,−1,p

(2) , Υ
−1,−1,p−1
(2) ; {Ω−1,k,p−1−k

(2) }, {Θ−1,k,p−2−k

(2) }; Ξ
−1,p,−1
(2) ,

Υ
−1,p−1,−1
(2) ) defined up to shifts by trivial cointertwiners leaving(Ξ

−1,−1,p

(1) , Υ
−1,−1,p−1
(1) ),

(Ξ
−1,−1,p

(2) , Υ
−1,−1,p−1
(2) ) unchanged, respectively (cf.Sections 2.4 and 3.1). In turn, the co-

homologically integer reaľCech cocycles(Ξp,−1,−1
(1) , Υ

p−1,−1,−1
(1) ), (Ξ−1,p,−1

(2) , Υ
−1,p−1,−1
(2) )

so obtained extend to relative differential cocycles(Ξ
p,−1,−1
(1) , Υ

p−1,−1,−1
(1) ; Ξ

∗p−1,−1,−1
(1) ,

Υ
∗p−2,−1,−1
(1) ; Ξ̂

p,−1,−1
(1) , Υ̂

p−1,−1,−1
(1) ), (Ξ−1,p,−1

(2) , Υ
−1,p−1,−1
(2) ;Ξ

∗−1,p−1,−1
(2) , Υ

∗−1,p−2,−1
(2) ;

Ξ̂
−1,p,−1
(2) , Υ̂

−1,p−1,−1
(2) ), defined up to shifts by torsion differential cocycles leaving

(Ξ
p,−1,−1
(1) , Υ

p−1,−1,−1
(1) ), (Ξ−1,p,−1

(2) , Υ
−1,p−1,−1
(2) ) unchanged, respectively (cf.Sections 2.5

and 3.1).
Using the above two sets of relative data, we can computeIO(i), i = 1, 2, using(3.7).

Since the choice of the relative data is not unique,IO(i) is affected by an indetermination
>IO(i) given by(3.8).

Next, our aim is to evaluate the differenceIO(2) − IO(1) modulo integers by constructing
suitable interpolating sequences between the relative data of the two coverings involved and
exploiting the results(3.30) and (3.43). In order to do that, we have first to find out under
which conditions such sequences do indeed exist.

Let us assume that(S
(1)
−1,−1,p−1, T

(1)
−1,−1,p−2; {V(1)

k,−1,p−1−k}, {Z(1)
k,−1,p−2−k}; S

(1)
p−1,−1,−1,

T
(1)
p−2,−1,−1), (S

(2)
−1,−1,p−1, T

(2)
−1,−1,p−2; {V(2)

−1,k,p−1−k}, {Z(2)
−1,k,p−2−k}; S

(2)
−1,p−1,−1,

T
(2)
−1,p−2,−1) are two relativěCech singularp−1-intertwiners (cf.Eqs. (2.24a)–(2.26b)) such

that (S(1)
−1,−1,p−1, T

(1)
−1,−1,p−2) = (S

(2)
−1,−1,p−1, T

(2)
−1,−1,p−2). Then, after possibly shifting

the intertwiners by trivial intertwiners (cf.Eqs. (2.27a)–(2.29b)) preserving this condition,
there exists a sequence of chains(S−1,−1,p−1, T−1,−1,p−2; {Vk,l,p−1−k−l}, {Zk,l,p−2−k−l};
{Sk,p−1−k,−1}, {Tk,p−2−k,−1}) interpolating the intertwiners, i.e satisfying(3.13a)–
(3.18b).
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Here is a sketch of the proof. We begin with noting that, ifUk,l,n is a Čech singular
chain withn > −1 such thatβ1β2Uk,l,n = 0, then there arěCech singular chainsUk+1,l,n,
Uk,l+1,n such thatUk,l,n = β1Uk+1,l,n+(−1)k+1β2Uk,l+1,n. This follows from the triviality
of theβ1, β2 homology forO(1), O(2)-small chains, respectively, whenn > −1 and the
fact that, if eitherk < −1 or l < −1, thenVk,l,n = 0 for anyČech singular chainsVk,l,n.
Set

S−1,−1,p−1 = S
(1)
−1,−1,p−1 = S

(2)
−1,−1,p−1, (3.44a)

T−1,−1,p−2 = T
(1)
−1,−1,p−2 = T

(2)
−1,−1,p−2. (3.44b)

Then,(S−1,−1,p−1, T−1,−1,p−2) is a relative singularp − 1-cycle:

bS−1,−1,p−1 − i∗T−1,−1,p−2 = 0, (3.45a)

−bT−1,−1,p−2 = 0. (3.45b)

Hence, there are a chainV0,0,p−1 of X and a chainZ0,0,p−2 of Y satisfying(3.13a) and
(3.13b). By substituting(3.13a) and (3.13b)into (3.45a) and (3.45b), one finds that(3.14a)
and (3.14b)hold fork, l = 0 for some chainsV1,0,p−2, V0,1,p−2 of X andZ1,0,p−3, Z0,1,p−3
of Y . The proof of(3.14a) and (3.14b)is completed by a straightforward induction on
the value ofk + l. Sk,p−1−k,−1, Tk,p−2−k,−1 are then defined according to(3.15a) and
(3.15b). Next, one verifies that relations(3.16a)–(3.18b)define two relativeČech sin-
gular p − 1-intertwiners extending(S(1)

−1,−1,p−1, T
(1)
−1,−1,p−2), (S

(2)
−1,−1,p−1, T

(2)
−1,−1,p−2).

Thus, these intertwiners must equal the original intertwiners up to trivial shifts preserving
(S

(1)
−1,−1,p−1, T

(1)
−1,−1,p−2), (S

(2)
−1,−1,p−1, T

(2)
−1,−1,p−2) (see the discussion ofSection 2.4).

The sequence of chains({Sk,p−1−k,−1}, {Tk,p−2−k,−1}) interpolates the integeřCech cy-

cles(S
(1)
p−1,−1,−1, T

(1)
p−2,−1,−1), (S

(2)
−1,p−1,−1, T

(2)
−1,p−2,−1), i.e. it satisfies(3.31a)–(3.32b).

These statements are straightforwardly verified.
Assume thatO(1) ∪ O(2) is a good covering of the pairX, Y and that(Ξ−1,−1,p

(1) ,

Υ
−1,−1,p−1
(1) ; {Ωk,−1,p−1−k

(1) }, {Θk,−1,p−2−k

(1) }; Ξ
p,−1,−1
(1) , Υ

p−1,−1,−1
(1) ), (Ξ

−1,−1,p

(2) ,

Υ
−1,−1,p−1
(2) ; {Ω−1,k,p−1−k

(2) }, {Θ−1,k,p−2−k

(2) }; Ξ
−1,p,−1
(2) , Υ

−1,p−1,−1
(2) ) are two relative

Čech–de Rhamp-cointertwiners (cf. Eqs. (2.36a)–(2.38b)) such that (Ξ
−1,−1,p

(1) ,

Υ
−1,−1,p−1
(1) ) = (Ξ

−1,−1,p

(2) , Υ
−1,−1,p−1
(2) ). Then, after possibly shifting the cointertwiners

by trivial cointertwiners (cf.Eqs. (2.39a)–(2.41b)) preserving this condition, there exists a
sequence of cochains (Ξ−1,−1,p, Υ−1,−1,p−1; {Ωk,l,p−2−k−l}, {Θk,l,p−3−k−l};
{Ξk,p−1−k,−1}, {Υ k,p−2−k,−1}) interpolating the cointertwiners, i.e. fulfilling(3.19a)–
(3.24b).

Here is a sketch of the proof. AsO(1) ∪ O(2) is a good covering of the pairX, Y , the
cohomology isomorphism(2.52)holds true. Set

Ξ−1,−1,p = Ξ
−1,−1,p

(1) = Ξ
−1,−1,p

(2) , (3.46a)

Υ−1,−1,p−1 = Υ
−1,−1,p−1
(1) = Υ

−1,−1,p−1
(2) . (3.46b)
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Then,(Ξ−1,−1,p, Υ−1,−1,p−1) is a relative de Rhamp-cocycle:

dΞ−1,−1,p = 0, (3.47a)

i∗Ξ−1,−1,p − dΥ−1,−1,p−1 = 0. (3.47b)

This can be extended to anO(1) ∪ O(2) relative cointertwiner, which is precisely the se-
quence of cochains interpolating the given relativeČech–de Rham cointertwiners we are
looking for. Indeed,(3.19a)–(3.21b)are nothing but the transcription of(2.36a)–(2.38b)for
the coveringO(1) ∪ O(2). One verifies that relations(3.22a)–(3.24b)define two relative
Čech–de Rham p-cointertwiner extending (Ξ

−1,−1,p

(1) , Υ
−1,−1,p−1
(1) ), (Ξ

−1,−1,p

(2) ,

Υ
−1,−1,p−1
(2) ). Thus, these cointertwiners must equal the original cointertwiners up to trivial

shifts preserving(Ξ−1,−1,p

(1) , Υ
−1,−1,p−1
(1) ), (Ξ

−1,−1,p

(2) , Υ
−1,−1,p−1
(2) ) (see the discussion of

Section 2.4).
If the relative de Rham cocycles(Ξ−1,−1,p

(1) , Υ
−1,−1,p−1
(1) ), (Ξ

−1,−1,p

(2) , Υ
−1,−1,p−1
(2) ) are

cohomologically integer, the relative realČech cocycles(Ξp,−1,−1
(1) , Υ

p−1,−1,−1
(1) ), (Ξ−1,p,−1

(2) ,

Υ
−1,p−1,−1
(2) ) are also cohomologically integer (cf.Section 2.5) and, therefore, fit into

two relative differentialp-cocycles(Ξ
p,−1,−1
(1) , Υ

p−1,−1,−1
(1) ; Ξ

∗p−1,−1,−1
(1) , Υ

∗p−2,−1,−1
(1) ;

Ξ̂
p,−1,−1
(1) , Υ̂

p−1,−1,−1
(1) ), (Ξ

−1,p,−1
(2) , Υ

−1,p−1,−1
(2) ; Ξ

∗−1,p−1,−1
(2) , Υ

∗−1,p−2,−1
(2) ; Ξ̂

−1,p,−1
(2) ,

Υ̂
−1,p−1,−1
(2) ) (cf. Eqs. (2.44a)–(2.46b)). In that case,({Ξk,p−1−k,−1}, {Υ k,p−2−k,−1}) ex-

tends to a sequence of cochains({Ξk,p−1−k,−1}, {Υ k,p−2−k,−1}; {Ξ∗k,p−2−k,−1},
{Υ ∗k,p−3−k,−1}; {Ξ̂k,p−1−k,−1}, {Υ̂ k,p−2−k,−1}) interpolating those cocycles, i.e. satisfy-
ing (3.33a)–(3.38b), after possibly shifting the latter by torsion differential cocycles (cf.
Eqs. (2.47a)–(2.49b)) preserving(Ξp,−1,−1

(1) , Υ
p−1,−1,−1
(1) ), (Ξ−1,p,−1

(2) , Υ
−1,p−1,−1
(2) ). More-

over, when the relative integeřCech cocycles(Ξ̂p,−1,−1
(1) , Υ̂

p−1,−1,−1
(1) ), (Ξ̂

−1,p,−1
(2) ,

Υ̂
−1,p−1,−1
(2) ) are representatives of the same relative integer singular cohomology class

via the isomorphism(2.53), the shifts by torsion differential cocycles preserve that coho-
mology class.

Indeed, the relative de Rham cocycle(Ξ−1,−1,p, Υ−1,−1,p−1) is cohomologically in-
teger, so that the relative realČech cocycle({Ξk,p−1−k,−1}, {Υ k,p−2−k,−1}) is similarly
cohomologically integer. Thus, it can be extended to anO(1) ∪ O(2) relative differ-
ential cocycle, which is the desired interpolating sequence of cochains.(3.33a)–(3.35b)
are indeed the transcription of(2.44a)–(2.46b)for the coveringO(1) ∪ O(2). One then
check that relations(3.36a)–(3.38b)define two relative differentialp-cocycles extending
(Ξ

p,−1,−1
(1) , Υ

p−1,−1,−1
(1) ), (Ξ−1,p,−1

(2) , Υ
−1,p−1,−1
(2) ). Thus, they must equal the given relative

differential cocycles up to a torsion differential cocycle preserving(Ξ
p,−1,−1
(1) , Υ

p−1,−1,−1
(1) ),

(Ξ
−1,p,−1
(2) , Υ

−1,p−1,−1
(2) ). When the relative integeřCech cocycles(Ξ̂p,−1,−1

(1) , Υ̂
p−1,−1,−1
(1) ),

(Ξ̂
−1,p,−1
(2) , Υ̂

−1,p−1,−1
(2) ) are representatives of the same relative integer singular coho-

mology class, the interpolating sequence of cochains can be chosen so that the relative
integerČech cocycle({Ξ̂k,p−1−k,−1}, {Υ̂ k,p−2−k,−1}) is also a representative of that co-
homology class. In that instance, relationsand (3.38b) and (3.38b)define two relative
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integerČech cocycles representing again that cohomology class and thus equivalent to
(Ξ̂

p,−1,−1
(1) , Υ̂

p−1,−1,−1
(1) ), (Ξ̂

−1,p,−1
(2) , Υ̂

−1,p−1,−1
(2) ) in relative integer Čech cohomo-

logy.
The above statements remain true if one of the two coverings, sayO(2), is substituted

by a refinementO′(2) which is a good covering ofX, Y (cf. Sections 2.1 and 2.4).
Indeed, asO′(2) is a refinement ofO(2), the associated refinement mapf2 induces a

homomorphismf ∗
2 of the space relativěCech–de Rham cochains ofO(1) ∪O(2) into that

of O(1) ∪O′(2), which preserves the de Rham andČech degrees, commutes withd and is
such thatf ∗

2 δ1 = δ1f
∗
2 , f ∗

2 δ2 = δ′
2f

∗
2 . Then, sequence of cochains obtained by applying

f ∗
2 to the interpolating sequence of cochains ofO(1),O(2) is interpolating with respect to
O(1),O′(2).

It is easy to see that the above conditions on the coveringsO(1),O(2) are trivially satisfied
for O(1) = O(2), so that, in this special case, interpolating sequences of cochains exist.
Then, interpolating sequences exist also whenO(2) is a refinement ofO(1).

In summary, we have shown the following.
First, there indeed exists a sequence of chains(S−1,−1,p−1, T−1,−1,p−2; {Vk,l,p−1−k−l},

{Zk,l,p−2−k−l}; {Sk,p−1−k,−1}, {Tk,p−2−k,−1}) interpolating the intertwiners(S(1)
−1,−1,p−1,

T
(1)
−1,−1,p−2; {V(1)

k,−1,p−1−k}, {Z(1)
k,−1,p−2−k}; S

(1)
p−1,−1,−1, T

(1)
p−2,−1,−1), (S

(2)
−1,−1,p−1,

T
(2)
−1,−1,p−2; {V(2)

−1,k,p−1−k}, {Z(2)
−1,k,p−2−k}; S

(2)
−1,p−1,−1, T

(2)
−1,p−2,−1)such that the sequence

of chains({Sk,p−1−k,−1}, {Tk,p−2−k,−1}) interpolates the integeřCech cycles(S(1)
p−1,−1,−1,

T
(1)
p−2,−1,−1), (S

(2)
−1,p−1,−1, T

(2)
−1,p−2,−1), possibly after shifting the intertwiners by trivial

intertwiners leaving(S(1)
−1,−1,p−1, T

(1)
−1,−1,p−2), (S

(2)
−1,−1,p−1, T

(2)
−1,−1,p−2) unchanged.

Secondly, provided the good coveringsO(1), O(2) satisfy the conditions illus-
trated above, there indeed exist a sequence of cochains(Ξ−1,−1,p, Υ−1,−1,p−1;
{Ωk,l,p−2−k−l}, {Θk,l,p−3−k−l}; {Ξk,p−1−k,−1}, {Υ k,p−2−k,−1}) interpolating the cointer-
twiners (Ξ

−1,−1,p

(1) , Υ
−1,−1,p−1
(1) ; {Ωk,−1,p−1−k

(1) }, {Θk,−1,p−2−k

(1) }; Ξ
p,−1,−1
(1) , Υ

p−1,−1,−1
(1) ),

(Ξ
−1,−1,p

(2) , Υ
−1,−1,p−1
(2) ; {Ω−1,k,p−1−k

(2) }, {Θ−1,k,p−2−k

(2) }; Ξ
−1,p,−1
(2) , Υ

−1,p−1,−1
(2) ) and a se-

quence of cochains({Ξk,p−1−k, −1}, {Υ k,p−2−k,−1}; {Ξ∗k,p−2−k,−1}, {Υ ∗k,p−3−k,−1};
{Ξ̂k,p−1−k,−1}, {Υ̂ k,p−2−k,−1}) interpolating the differential cocycles(Ξp,−1,−1

(1) ,

Υ
p−1,−1,−1
(1) ; Ξ

∗p−1,−1,−1
(1) , Υ

∗p−2,−1,−1
(1) ; Ξ̂

p,−1,−1
(1) , Υ̂

p−1,−1,−1
(1) ), (Ξ−1,p,−1

(2) , Υ
−1,p−1,−1
(2) ;

Ξ
∗−1,p−1,−1
(2) , Υ

∗−1,p−2,−1
(2) ; Ξ̂

−1,p,−1
(2) , Υ̂

−1,p−1,−1
(2) ), which are compatible in the sense that

the end of the first interpolating sequence equals the beginning of the second, as shown
by the notation, possibly after shifting the cointertwiners and the differential cocycles
by trivial cointertwiners and torsion differential cocycles leaving(Ξ

−1,−1,p

(1) , Υ
−1,−1,p−1
(1) ),

(Ξ
−1,−1,p

(2) , Υ
−1,−1,p−1
(2) ) unchanged. Further, when the relative integerČech cocycles

(Ξ̂
p,−1,−1
(1) , Υ̂

p−1,−1,−1
(1) ), (Ξ̂

−1,p,−1
(2) , Υ̂

−1,p−1,−1
(2) ) represent the same relative integer sin-

gular cohomology class, the shifts by torsion differential cocycles preserve that cohomology
class.

Then, by(3.7), (3.30) and (3.43), for given (Sp−1, Tp−2) ∈ Z
sO(i)
p−1 (X, Y), i = 1, 2,

(Ξp, Υ p−1) ∈ Z
p

dRZ(X, Y), the differenceIO(2) − IO(1) is integer, provided the relative



386 R. Zucchini / Journal of Geometry and Physics 46 (2003) 355–393

data employed in the construction ofIO(i) are suitably chosen. Since, however, this may
not be the case, we see that a weaker result holds in general, namely

IO(2) + >IO(2) − IO(1) − >IO(1) = 0 modZ, (3.48)

where the indeterminations>IO(i), given by(3.8), account for the shifts relating the relative
data used inIO(i) and those for which the interpolating sequences exist.

As discussed inSection 3.1, the indeterminations>IO(i) are not integer in general. By
demanding that(Ξ̂p,−1,−1

(1) , Υ̂
p−1,−1,−1
(1) ), (Ξ̂

−1,p,−1
(2) , Υ̂

−1,p−1,−1
(2) ) are representatives of a

fixed cohomology class ofHp

sZ(X, Y) via (2.53), the>IO(i) are given modulo integers by
expressions of the form of the right hand side of(3.11).

As we have seen inSection 3.1, for a given good coveringO, theZ linear functional
ΦO : ZsO

p−1(X, Y) → R/Z, Eq. (3.9), depends on a choice of a relative integer singular

cohomology class inHp

sZ(X, Y), a representative(Ξp, Υ p−1) ∈ Z
p

dRZ(X, Y) of the im-
age of such class inHp

dRZ(X, Y) and a point in the relative de Rham cohomology torus

H
p−1
dR (X, Y)/H

p−1
dRZ (X, Y). The parametrization of the family of mapsΦO in terms of

H
p−1
dR (X, Y)/H

p−1
dRZ (X, Y) is however not unique. A change of the parametrization changes

ΦO by an amount given by(3.11) and (3.12). Thus, after fixing the cohomology class in
H

p

sZ(X, Y) and its representative(Ξp, Υ p−1) ∈ Z
p

dRZ(X, Y), there still is no natural way
of comparing the mapsΦO(1), ΦO(2) for the good coveringsO(1), O(2), unless we have
a mapping relating theirHp−1

dR (X, Y)/H
p−1
dRZ (X, Y) parametrizations. This is precisely the

origin of the residual indetrminations>IO(i) of the previous paragraph.
Then, from(3.9) and (3.48), we can draw the following conclusions. LetO(1),O(2) be

two good coverings ofX, Y andO(12) be a common refinement ofO(1), O(2) which is
also a good covering. Let(Sp−1, Tp−2) ∈ Z

sO(12)
p−1 (X, Y), (Ξp, Υ p−1) ∈ Z

p

dRZ(X, Y). The
pairs of good coveringsO(1), O(12) andO(2), O(12) satisfy the requirements sufficient
for the existence of interpolating sequences of cochains. Then

ΦO(i)(S, T ; Ξ, Υ) = ΦO(12)(S, T ; Ξ, Υ), i = 1, 2 (3.49)

provided theHp−1
dR (X, Y)/H

p−1
dRZ (X, Y) parametrization ofΦO(i), ΦO(12) is suitably chosen.

Thus, for(Sp−1, Tp−2) ∈ Z
sO(12)
p−1 (X, Y), (Ξp, Υ p−1) ∈ Z

p

dRZ(X, Y):

ΦO(1)(S, T ; Ξ, Υ) = ΦO(2)(S, T ; Ξ, Υ) (3.50)

provided theHp−1
dR (X, Y)/H

p−1
dRZ (X, Y) parametrizations ofΦO(1), ΦO(2) are suitably cho-

sen.
Let us assume that the family of good open coverings ofX, Y is cofinal in the family

of open coverings ofX (cf. Sections 2.4 and 2.5). The conditions under which this is the
case will be analyzed separately inAppendix A. Then, in the sense stated in(3.50), ΦO is
independent from covering choices.



R. Zucchini / Journal of Geometry and Physics 46 (2003) 355–393 387

3.3. Extension ofΦO to non-O-small relative cycles

Since any dependence on a choice of open coveringO is unnatural, we would like to
extend theZ linear mapΦO : ZsO

p−1(X, Y) → R/Z of Section 3.1to aZ linear mapΦ :
Zs

p−1(X, Y) → R/Z independent fromO. This can indeed be done using the barycentric
subdivision operatorq introduced inSection 2.1as follows.

Let us fix the cohomology class ofH
p

sZ(X, Y), its representative(Ξp, Υ p−1) ∈ Z
p

dRZ(X,

Y) and the point of the torusHp−1
dR (X, Y)/H

p−1
dRZ (X, Y) involved in the definition ofΦO. Let

(Sp−1, Tp−2) ∈ Zs
p−1(X, Y) be a general relative singularp − 1-cycle. Pick a good open

coveringO of the pairX, Y . For a sufficiently largek ≥ 0,(qkSp−1, qkTp−2) ∈ ZsO
p−1(X, Y)

isO-small. We then set

Φ(S, T ; Ξ, Υ) = ΦO(qkS, qkT ; Ξ, Υ). (3.51)

Next, we shall show that the right hand side of(3.51)does not depend onO andk, making
the definition well posed.

From(2.5), for k, l ≥ 0, one has

bc(k,l) + c(k,l)b = qk − ql, c(k,l) = sgn(k − l) · c

max(k,l)−1∑
r=min(k,l)

qr. (3.52)

So, by(2.20a) and (2.20b)

bc(k,l)Sp−1 + i∗c(k,l)Tp−2 = qkSp−1 − qlSp−1, (3.53a)

bc(k,l)Tp−2 = qkTp−2 − qlTp−2. (3.53b)

Therefore,(qkSp−1−qlSp−1, qkTp−2−qlTp−2) is the relative boundary of the relative chain
(c(k,l)Sp−1, −c(k,l)Tp−2). Now, if k, l are large enough,qrSp−1,qrTp−2 are bothO-small for
r ≥ min(k, l). Sincec preservesO-smallness and the range ofc contains only degenerate
chains (seeSection 2.1), both c(k,l)Sp−1 and c(k,l)Tp−2 areO-small and degenerate, by
(3.52). Recall that degenerate chains are invisible, that is the integral of any form on any
such chain vanishes. So, recalling(2.15) and (3.10)

ΦO(qkS, qkT ; Ξ, Υ) − ΦO(qlS, qlT ; Ξ, Υ)

= ΦO(qkS − qlS, qkT − qlT ; Ξ, Υ) = ΦO(bc(k,l)S + i∗c(k,l)T, bc(k,l)T ; Ξ, Υ)

= 〈c(k,l)Sp−1, Ξp〉 + 〈c(k,l)Tp−2, Υ p−1〉 = 0 modZ. (3.54)

This shows that the right hand side of(3.51)is independent fromk.
LetO(1),O(2) be two good coverings. LetO(12) be a good covering refining bothO(1),

O(2) and letk be large enough so that(qkSp−1, qkTp−2) isO(12)-small. Then

ΦO(1)(qkS, qkT ; Ξ, Υ) − ΦO(2)(qkS, qkT ; Ξ, Υ) = 0 (3.55)

by (3.50), provided theH
p−1
dR (X, Y)/H

p−1
dRZ (X, Y) parametrizations ofΦO(1), ΦO(2) are

suitably chosen. This shows that the right hand side of(3.51)is independent fromO.
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We have thus managed to define a mappingΦ : Zs
p−1(X, Y) → R/Z. It is easy to show

thatΦ is Z linear. For givenZ linear combinations of relative cycles, one chooses a good
coveringO and a subdivision degreek large enough so that all the relative cycles involved
areO-small. Then, theZ linearity ofΦ follows trivially from that ofΦO.

When the relative (co)cycles(Sp−1, Tp−2), (Ξp, Υ p−1) are shifted by the relative (co)bo-
undaries given by the right hand sides of(2.21a), (2.21b), (2.33a) and (2.33b), respectively,
one has

>Φ(S, T ; Ξ, Υ) = 〈Sp−1, ξp−1〉 − 〈Tp−2, υp−2〉 + 〈sp, Ξp〉 − 〈tp−1, Υ p−1〉
+〈sp, dξp−1〉 − 〈tp−1, i∗ξp−1 − dυp−2〉 modZ. (3.56)

Indeed, providedk is large enough to make all chains involvedO-small,>Φ(S, T ; Ξ, Υ)

= >ΦO(qkS, qkT ; Ξ, Υ), which, on account of(3.10), is given by

>ΦO(qkS, qkT ; Ξ, Υ) = 〈qkSp−1, ξp−1〉 − 〈qkTp−2, υp−2〉 + 〈qksp, Ξp〉
−〈qktp−1, Υ p−1〉 + 〈qksp, dξp−1〉
−〈qktp−1, i∗ξp−1 − dυp−2〉 modZ. (3.57)

Using(2.20a), (2.20b) and (3.52), one has

bc(k,0)Sp−1 + i∗c(k,0)Tp−2 = qkSp−1 − Sp−1, (3.58a)

bc(k,0)Tp−2 = qkTp−2 − Tp−2, (3.58b)

bc(k,0)sp + c(k,0)bsp = qksp − sp, (3.58c)

bc(k,0)tp−1 + c(k,0)btp−1 = qktp−1 − tp−1. (3.58d)

As the range ofc contains only degenerate chains,c(k,0)Sp−1, c(k,0)Tp−2, c(k,0)sp, c(k,0)tp−1
are all degenerate, hence invisible. Then, by(3.58a)–(3.58d), the chainsqkSp−1 − Sp−1,
qkTp−2 − Tp−2, qksp − sp, qktp−1 − tp−1 are all invisible. It follows that the right hand
side of(3.57)equals that of(3.56).

If we change theHp−1
dR (X, Y)/H

p−1
dRZ (X, Y) parametrization,Φ(S, T ; Ξ, Υ) varies of an

amount given by

>Φ(S, T ; Ξ, Υ) = −[〈Sp−1, Πp−1〉 − 〈Tp−2, Σp−2〉] modZ (3.59)

for some relative de Rham cocycle(Πp−1, Σp−2) defined up to cohomologically integer
relative de Rham cocycles. Indeed, providedk is so large that all chains involved areO-small,
>Φ(S, T ; Ξ, Υ) = >ΦO(qkS, qkT ; Ξ, Υ), so that, by(3.12):

>ΦO(qkS, qkT ; Ξ, Υ) = −[〈qkSp−1, Πp−1〉 − 〈qkTp−2, Σp−2〉] modZ. (3.60)

By (3.58a)–(3.58d), the chainsqkSp−1 − Sp−1, qkTp−2 − Tp−2, are all invisible. It follows
that the right hand side of(3.59)equals that of(3.60).
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3.4. The end product: the familyCSp
X,Y of relative Cheeger–Simons differential characters

We have thus defined a family ofZ linear mappingΦ : Zs
p−1(X, Y) → R/Z param-

eterized by a relative integer singular cohomology class inH
p

sZ(X, Y), a representative
(Ξp, Υ p−1) ∈ Z

p

dRZ(X, Y) of the image of such class inHp

dRZ(X, Y) and a point in the rel-

ative de Rham cohomology torusH
p−1
dR (X, Y)/H

p−1
dRZ (X, Y). We claim that this is precisely

the family of degreep Y relative Cheeger–Simons differential characters ofX, CSp
X,Y . This

will become clear in the next section. See also the heuristic discussion given inSection 1for
comparison. It is important to recall that the above construction works provided the family of
good open coverings ofX, Y is cofinal in the family of open coverings ofX (cf. Sections 2.4
and 3.2).

4. Formal properties of the relative Cheeger–Simons differential characters

In this section, we shall define the relative Cheeger–Simons differential characters in
abstract terms and study their main formal properties. This will lead us to identify the
family CSp

X,Y of these characters with the family of characters constructed inSection 3.
Let p, X, Y satisfy the same assumptions as inSection 2.2.

4.1. Basic properties of the relative Cheeger–Simons characters

By definition,Φ ∈ CSp
X,Y if Φ : Zs

p−1(X, Y) → R/Z is aZ linear mapping and there is

a relative de Rhamp-cochain(Ξp, Υ p−1) ∈ C
p

dR(X, Y) such that

Φ(bs− i∗t, −bt) = 〈sp, Ξp〉 − 〈tp−1, Υ p−1〉 modZ (3.61)

for all relative singular chains(sp, tp−1) ∈ Cs
p(X, Y). CSp

X,Y is clearly a group.
Let Φ ∈ CSp

X,Y . If (sp, tp−1) ∈ Zs
p(X, Y) is a relative singularp-cycle, thenΦ(bs−

i∗t, −bt) = 0, by(2.20a) and (2.20b)(with p replaced byp + 1). From(3.61), we thus get
the quantization condition

〈sp, Ξp〉 − 〈tp−1, Υ p−1〉 ∈ Z. (3.62)

Further, if (sp, tp−1) ∈ Bs
p(X, Y) is the boundary of a relative singularp + 1-chain

(up+1, vp), one has from(3.62)

〈up+1, dΞp〉 − 〈vp, i∗Ξp − dΥ p−1〉 ∈ Z (3.63)

by (2.21a) and (2.21b)(with p replaced byp + 1) and(2.16) and (2.17). By (3.63), since
(up+1, vp) is arbitrary,(Ξp, Υ p−1) must satisfy(2.32a) and (2.32b)and is thus a relative
de Rham cocycle. From(3.62), (Ξp, Υ p−1) is cohomologically integer. Therefore, for any
Φ ∈ CSp

X,Y , (Ξp, Υ p−1) ∈ Z
p

dRZ(X, Y).
To anyΦ ∈ CSp

X,Y there is associated a well-defined relative integer singular cohomology

class inH
p

sZ(X, Y) such that(Ξp, Υ p−1) is a representative of the image of such class in
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H
p

dRZ(X, Y). Indeed, asR/Z is a divisible group andZs
p−1(X, Y) is a subgroup of the free

group Cs
p−1(X, Y), there is aZ linear mappingΦ̄ : Cs

p−1(X, Y) → R such thatΦ =
Φ̄|Zs

p−1(X, Y) modZ. Then, by(3.61),

Λp(sp) − Γ p−1(tp−1) = Φ̄(bs− i∗t, −bt) − 〈sp, Ξp〉 + 〈tp−1, Υ p−1〉 (3.64)

with (sp, tp−1) ∈ Cs
p(X, Y), defines a relative integer singular cochain(Λp, Γ p−1), which

is readily checked to be a cocycle cohomologically equivalent to(Ξp, Υ p−1). The choice of
Φ̄ affects(Λp, Γ p−1) at most by a relative integer singular coboundary. Hence, the integer
singular cohomology class of(Λp, Γ p−1) is unambiguously determined byΦ.

Let (Πp−1, Σp−2) ∈ C
p−1
dR (X, Y) be a relative de Rhamp − 1-cochain. Then

Φ(S, T) = 〈Sp−1, Πp−1〉 − 〈Tp−2, Σp−2〉 modZ (3.65)

for (Sp−1, Tp−2) ∈ Zs
p−1(X, Y), defines a characterΦ ∈ CSp

X,Y . Φ depends only on

the equivalence class of(Πp−1, Σp−2) modulo the cohomologically integer relative de
Rhamp− 1-cocycles ofZp−1

dRZ(X, Y). The class ofHp

sZ(X, Y) corresponding toΦ vanishes.
The relative de Rham cocycle(Ξp, Υ p−1) of Φ is the relative de Rham coboundary of
(Πp−1, Σp−2) (cf. Eq. (2.33a) and (2.33b)) and(Ξp, Υ p−1) vanishes in the important case
when(Πp−1, Σp−2) ∈ Z

p−1
dR (X, Y).

4.2. The first relative Cheeger–Simons exact sequence

From the above discussion, it follows that there is an exact sequence of the form

0 → H
p−1
dR (X, Y)

H
p−1
dRZ (X, Y)

→ CSp
X,Y → A

p

Z
(X, Y) → 0, (3.66)

whereA
p

Z
(X, Y) is the subset of the Cartesian productH

p

sZ(X, Y) × Z
p

dRZ(X, Y) formed
by the pairs of a relative integer singular cohomology class inH

p

sZ(X, Y) and a represen-
tative of the image of such class inHp

dRZ(X, Y). The relative de Rham cohomology torus

H
p−1
dR (X, Y)/H

p−1
dRZ (X, Y) appears here. It parameterizes the group of allΦ ∈ CSp

X,Y char-
acterized by the same pair of data inA

p

Z
(X, Y). The sequence(3.66) in the absolute case

was found in Ref.[32].
We note that theZ linear mappingsΦ : Zs

p−1(X, Y) → R/Z constructed inSection 3

all belong toCSp
X,Y as they satisfy(3.61) on account of(3.56). Each suchΦ is charac-

terized by a relative integer singular cohomology class inH
p

sZ(X, Y) and a representative
(Ξp, Υ p−1) ∈ Z

p

dRZ(X, Y) of the image of such class inHp

dRZ(X, Y). As is easy to see,
these relative data are precisely the ones defined abstractly inSection 4.1above. Indeed,
(3.64)is the statement in the language of singular cohomology that the sequence of cochains
(Ξp, Υ p−1; Φ̄; Λp, Γ p−1) is a differential cocycles (cf.Section 2.3and the discussion of
Section 3.1). The set of theΦ compatible with a fixed choice of the relative data is param-
eterized byHp−1

dR (X, Y)/H
p−1
dRZ (X, Y). This justifies our claim that the family ofZ linear

mappingsΦ of Section 3is preciselyCSp
X,Y .
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4.3. The second relative Cheeger–Simons exact sequence

From the above discussion, there is another exact sequence of the form

0 → C
p−1
dR (X, Y)

Z
p−1
dRZ(X, Y)

→ CSp
X,Y → H

p

sZ(X, Y) → 0, (3.67)

which is directly related to the first one. This sequence indicates that the group of all the
charactersΦ ∈ CSp

X,Y characterized by the same cohomology class inH
p

sZ(X, Y) is isomor-

phic toC
p−1
dR (X, Y)/Z

p−1
dRZ(X, Y). In the absolute case, the sequence was found in Ref.[11].

Its importance stems from the fact that it reveals the relation between the Cheeger–Simons
differential characters and the smooth Beilinson–Deligne cohomology[12–14].

The analysis ofSection 3furnishes an expression of the dependence of the Cheeger–Simons
charactersΦ ∈ CSp

X,Y on the cohomologically integer relative de Rham cocycle(Ξp, Υ p−1) ∈
Z

p

dRZ(X, Y) for a fixed class inHp

sZ(X, Y). Indeed, from(3.56), if we shift (Ξp, Υ p−1) by a
relative de Rham coboundary of the form(2.33a) and (2.33b), Φ varies of an
amount:

>Φ(S, T) = 〈Sp−1, ξp−1〉 − 〈Tp−2, υp−2〉 (3.68)

for (Sp−1, Tp−2) ∈ Zs
p−1(X, Y).

5. Concluding remarks

In this paper, we have shown that the proper treatment of the topological integrals ap-
pearing in many physical models such as gauge theory and string theory requires in an
essential way relative (co)homology and leads to relative Cheeger–Simons differential
characters. Instead of contenting ourselves with an abstract study of these matters, we
have worked out a definition of relative Cheeger–Simons differential characters which
is constructive, i.e. computable in principle, and which contains the ordinary Cheeger–
Simons differential characters as a particular case. The resulting expressions are totally
explicit and completely general and lend themselves also to a more formal type of
study.

Our method relies heavily oňCech (co)homological machinery. This has its advantages
and disadvantages. At any rate, it seems hardly avoidable when one has to deal with locally
defined fields on arbitrary topologically non-trivial manifolds. A major part of the effort
consisted in showing independence from covering choices.

We limited ourselves to the case where the quantization conditions can be formulated in
the framework of integral relative cohomology. This excludes interesting examples from
D-brane theory, which require more general cohomology theories such asK-theory. It
would be very interesting to generalize our constructions toK-theory. This is left for future
work.
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Appendix A. Existence and cofinality of good open coverings

Let M be a manifold equipped with a Riemannian metricg. Form ∈ M andu ∈ TmM,
we set|u|Mg = gm(u, u)1/2. For r > 0, we defineBMg(m, r) = {u|u ∈ TmM, |u|Mg < r}.
The exponential expMg is a map of an open neighborhoodNMg of the 0 section ofTM into
M. It has the basic property that, form ∈ M andu ∈ TmM, the curveγmu(t) = expMg(tu),
0 ≤ t, tu ∈ NMg, is the unique geodesic with initial condition(m, u) [40].

The following theorem holds[40]. For m ∈ M, there isrMg(m) > 0 such that, for any
r with 0 < r < rMg(m), BMg(m, r) ⊆ NMg and there is an open neighborhoodUMg(m, r)

of m in M such that expMg : BMg(m, r) → UMg(m, r) is a diffeomorphism. Further,
UMg(m, r) is geodesically convex, that is every two pointsp, q ∈ UMg(m, r) can be joined
by a unique distance minimizing geodesic contained inUMg(m, r). Form ∈ M, the family
UMg(m) = {UMg(m, r)|0 < r < rMg(m)} is a fundamental system of geodesically convex
open neighborhoods ofm. Since the intersection of any finite number of geodesically convex
open sets is geodesically convex, the open coveringsO of M made of setsUMg(m, r) with
varyingm and sufficiently smallr are good. Further, such good coverings are cofinal in the
family of all open coverings (cf.Section 2.1).

Let X be a manifold equipped with a Riemannian metricg and letY be a submanifold
of X with induced metrici∗g. Assume thatY is totally geodesic[40]. Then, every geodesic
of Y with respect to the metrici∗g is a geodesic ofX with respect tog, so that expYi∗g =
expXg|NYi∗g ∩ NXg. It follows that fory ∈ Y ⊆ X and 0< r < rYi∗g(y), UYi∗g(y, r) =
UXg(y, r) ∩ Y . Now, defineU ′

Xg(x) = {UXg(x, r)|0 < r < rXg(x), UXg(x, r) ∩ Y = ∅}, for
x ∈ X \ Y , U ′

Xg(y) = {UXg(y, r)|0 < r < rYi∗g(y)}, for y ∈ Y . Then, for anyx ∈ X, U′
Xg(x)

is a fundamental system of geodesically convex open neighborhoods ofx such that, for any
y ∈ Y , U′

Xg(y) ∩ Y = UYi∗g(y). From the discussion of the previous paragraph, it follows
that the open coveringsO of X made of setsUXg(x, r) with varyingx and sufficiently small
r are good for the pairX, Y (cf. Section 2.4) and that such good coverings are cofinal in the
family of all open coverings.

Therefore, given a manifoldX and a submanifoldY of X, in order a cofinal family of
good open coverings ofX, Y to exist, it is sufficient that there is a Riemannian metricg on
X with respect to whichY is totally geodesic.
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